Abstract:The multi-view hash method converts heterogeneous data from multiple views into binary hash codes, which is one of the critical technologies in multimedia retrieval. However, the current methods mainly explore the complementarity among multiple views while lacking confidence learning and fusion. Moreover, in practical application scenarios, the single-view data contain redundant noise. To conduct the confidence learning and eliminate unnecessary noise, we propose a novel Adaptive Confidence Multi-View Hashing (ACMVH) method. First, a confidence network is developed to extract useful information from various single-view features and remove noise information. Furthermore, an adaptive confidence multi-view network is employed to measure the confidence of each view and then fuse multi-view features through a weighted summation. Lastly, a dilation network is designed to further enhance the feature representation of the fused features. To the best of our knowledge, we pioneer the application of confidence learning into the field of multimedia retrieval. Extensive experiments on two public datasets show that the proposed ACMVH performs better than state-of-the-art methods (maximum increase of 3.24%). The source code is available at https://github.com/HackerHyper/ACMVH.
Abstract:Point-cloud-based 3D object detection suffers from performance degradation when encountering data with novel domain gaps. To tackle it, the single-domain generalization (SDG) aims to generalize the detection model trained in a limited single source domain to perform robustly on unexplored domains. In this paper, we propose an SDG method to improve the generalizability of 3D object detection to unseen target domains. Unlike prior SDG works for 3D object detection solely focusing on data augmentation, our work introduces a novel data augmentation method and contributes a new multi-task learning strategy in the methodology. Specifically, from the perspective of data augmentation, we design a universal physical-aware density-based data augmentation (PDDA) method to mitigate the performance loss stemming from diverse point densities. From the learning methodology viewpoint, we develop a multi-task learning for 3D object detection: during source training, besides the main standard detection task, we leverage an auxiliary self-supervised 3D scene restoration task to enhance the comprehension of the encoder on background and foreground details for better recognition and detection of objects. Furthermore, based on the auxiliary self-supervised task, we propose the first test-time adaptation method for domain generalization of 3D object detection, which efficiently adjusts the encoder's parameters to adapt to unseen target domains during testing time, to further bridge domain gaps. Extensive cross-dataset experiments covering "Car", "Pedestrian", and "Cyclist" detections, demonstrate our method outperforms state-of-the-art SDG methods and even overpass unsupervised domain adaptation methods under some circumstances. The code will be made publicly available.
Abstract:Active Learning (AL) and Few Shot Learning (FSL) are two label-efficient methods which have achieved excellent results recently. However, most prior arts in both learning paradigms fail to explore the wealth of the vast unlabelled data. In this study, we address this issue in the scenario where the annotation budget is very limited, yet a large amount of unlabelled data for the target task is available. We frame this work in the context of histopathology where labelling is prohibitively expensive. To this end, we introduce an active few shot learning framework, Myriad Active Learning (MAL), including a contrastive-learning encoder, pseudo-label generation, and novel query sample selection in the loop. Specifically, we propose to massage unlabelled data in a self-supervised manner, where the obtained data representations and clustering knowledge form the basis to activate the AL loop. With feedback from the oracle in each AL cycle, the pseudo-labels of the unlabelled data are refined by optimizing a shallow task-specific net on top of the encoder. These updated pseudo-labels serve to inform and improve the active learning query selection process. Furthermore, we introduce a novel recipe to combine existing uncertainty measures and utilize the entire uncertainty list to reduce sample redundancy in AL. Extensive experiments on two public histopathology datasets show that MAL has superior test accuracy, macro F1-score, and label efficiency compared to prior works, and can achieve a comparable test accuracy to a fully supervised algorithm while labelling only 5% of the dataset.
Abstract:The recent success of SimCSE has greatly advanced state-of-the-art sentence representations. However, the original formulation of SimCSE does not fully exploit the potential of hard negative samples in contrastive learning. This study introduces an unsupervised contrastive learning framework that combines SimCSE with hard negative mining, aiming to enhance the quality of sentence embeddings. The proposed focal-InfoNCE function introduces self-paced modulation terms in the contrastive objective, downweighting the loss associated with easy negatives and encouraging the model focusing on hard negatives. Experimentation on various STS benchmarks shows that our method improves sentence embeddings in terms of Spearman's correlation and representation alignment and uniformity.
Abstract:Prompt learning for vision-language models, e.g., CoOp, has shown great success in adapting CLIP to different downstream tasks, making it a promising solution for federated learning due to computational reasons. Existing prompt learning techniques replace hand-crafted text prompts with learned vectors that offer improvements on seen classes, but struggle to generalize to unseen classes. Our work addresses this challenge by proposing Federated Text-driven Prompt Generation (FedTPG), which learns a unified prompt generation network across multiple remote clients in a scalable manner. The prompt generation network is conditioned on task-related text input, thus is context-aware, making it suitable to generalize for both seen and unseen classes. Our comprehensive empirical evaluations on nine diverse image classification datasets show that our method is superior to existing federated prompt learning methods, that achieve overall better generalization on both seen and unseen classes and is also generalizable to unseen datasets.
Abstract:Contrastive Language-Image Pre-training (CLIP) models have shown promising performance on zero-shot visual recognition tasks by learning visual representations under natural language supervision. Recent studies attempt the use of CLIP to tackle zero-shot anomaly detection by matching images with normal and abnormal state prompts. However, since CLIP focuses on building correspondence between paired text prompts and global image-level representations, the lack of patch-level vision to text alignment limits its capability on precise visual anomaly localization. In this work, we introduce a training-free adaptation (TFA) framework of CLIP for zero-shot anomaly localization. In the visual encoder, we innovate a training-free value-wise attention mechanism to extract intrinsic local tokens of CLIP for patch-level local description. From the perspective of text supervision, we particularly design a unified domain-aware contrastive state prompting template. On top of the proposed TFA, we further introduce a test-time adaptation (TTA) mechanism to refine anomaly localization results, where a layer of trainable parameters in the adapter is optimized using TFA's pseudo-labels and synthetic noise-corrupted tokens. With both TFA and TTA adaptation, we significantly exploit the potential of CLIP for zero-shot anomaly localization and demonstrate the effectiveness of our proposed methods on various datasets.
Abstract:Deep Neural Networks are susceptible to adversarial perturbations. Adversarial training and adversarial purification are among the most widely recognized defense strategies. Although these methods have different underlying logic, both rely on absolute logit values to generate label predictions. In this study, we theoretically analyze the logit difference around successful adversarial attacks from a theoretical point of view and propose a new principle, namely Adversarial Logit Update (ALU), to infer adversarial sample's labels. Based on ALU, we introduce a new classification paradigm that utilizes pre- and post-purification logit differences for model's adversarial robustness boost. Without requiring adversarial or additional data for model training, our clean data synthesis model can be easily applied to various pre-trained models for both adversarial sample detection and ALU-based data classification. Extensive experiments on both CIFAR-10, CIFAR-100, and tiny-ImageNet datasets show that even with simple components, the proposed solution achieves superior robustness performance compared to state-of-the-art methods against a wide range of adversarial attacks. Our python implementation is submitted in our Supplementary document and will be published upon the paper's acceptance.
Abstract:There emerges a promising trend of using large language models (LLMs) to generate code-like plans for complex inference tasks such as visual reasoning. This paradigm, known as LLM-based planning, provides flexibility in problem solving and endows better interpretability. However, current research is mostly limited to basic scenarios of simple questions that can be straightforward answered in a few inference steps. Planning for the more challenging multi-hop visual reasoning tasks remains under-explored. Specifically, under multi-hop reasoning situations, the trade-off between accuracy and the complexity of plan-searching becomes prominent. The prevailing algorithms either address the efficiency issue by employing the fast one-stop generation or adopt a complex iterative generation method to improve accuracy. Both fail to balance the need for efficiency and performance. Drawing inspiration from the dual system of cognition in the human brain, the fast and the slow think processes, we propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow). Our approach succeeds in performance while significantly saving inference steps. Moreover, we repurpose the PTR and the CLEVER datasets, developing a systematic framework for evaluating the performance and efficiency of LLMs-based plan-search algorithms under reasoning tasks at different levels of difficulty. Extensive experiments demonstrate the superiority of our proposed algorithm in terms of performance and efficiency. The dataset and code will be release soon.
Abstract:Deep neural networks (DNNs) have demonstrated promising results in various complex tasks. However, current DNNs encounter challenges with over-parameterization, especially when there is limited training data available. To enhance the generalization capability of DNNs, the Mixup technique has gained popularity. Nevertheless, it still produces suboptimal outcomes. Inspired by the successful Sharpness-Aware Minimization (SAM) approach, which establishes a connection between the sharpness of the training loss landscape and model generalization, we propose a new learning framework called Generalized-Mixup, which combines the strengths of Mixup and SAM for training DNN models. The theoretical analysis provided demonstrates how the developed G-Mix framework enhances generalization. Additionally, to further optimize DNN performance with the G-Mix framework, we introduce two novel algorithms: Binary G-Mix and Decomposed G-Mix. These algorithms partition the training data into two subsets based on the sharpness-sensitivity of each example to address the issue of "manifold intrusion" in Mixup. Both theoretical explanations and experimental results reveal that the proposed BG-Mix and DG-Mix algorithms further enhance model generalization across multiple datasets and models, achieving state-of-the-art performance.
Abstract:Continual lifelong learning is an machine learning framework inspired by human learning, where learners are trained to continuously acquire new knowledge in a sequential manner. However, the non-stationary nature of streaming training data poses a significant challenge known as catastrophic forgetting, which refers to the rapid forgetting of previously learned knowledge when new tasks are introduced. While some approaches, such as experience replay (ER), have been proposed to mitigate this issue, their performance remains limited, particularly in the class-incremental scenario which is considered natural and highly challenging. In this paper, we present a novel algorithm, called adaptive-experience replay (AdaER), to address the challenge of continual lifelong learning. AdaER consists of two stages: memory replay and memory update. In the memory replay stage, AdaER introduces a contextually-cued memory recall (C-CMR) strategy, which selectively replays memories that are most conflicting with the current input data in terms of both data and task. Additionally, AdaER incorporates an entropy-balanced reservoir sampling (E-BRS) strategy to enhance the performance of the memory buffer by maximizing information entropy. To evaluate the effectiveness of AdaER, we conduct experiments on established supervised continual lifelong learning benchmarks, specifically focusing on class-incremental learning scenarios. The results demonstrate that AdaER outperforms existing continual lifelong learning baselines, highlighting its efficacy in mitigating catastrophic forgetting and improving learning performance.