Abstract:Accurate and contrast-free Major Adverse Cardiac Events (MACE) prediction from Cine MRI sequences remains a critical challenge. Existing methods typically necessitate supervised learning based on human-refined masks in the ventricular myocardium, which become impractical without contrast agents. We introduce a self-supervised framework, namely Codebook-based Temporal-Spatial Learning (CTSL), that learns dynamic, spatiotemporal representations from raw Cine data without requiring segmentation masks. CTSL decouples temporal and spatial features through a multi-view distillation strategy, where the teacher model processes multiple Cine views, and the student model learns from reduced-dimensional Cine-SA sequences. By leveraging codebook-based feature representations and dynamic lesion self-detection through motion cues, CTSL captures intricate temporal dependencies and motion patterns. High-confidence MACE risk predictions are achieved through our model, providing a rapid, non-invasive solution for cardiac risk assessment that outperforms traditional contrast-dependent methods, thereby enabling timely and accessible heart disease diagnosis in clinical settings.
Abstract:Accurate segmentation of myocardial lesions from multi-sequence cardiac magnetic resonance imaging is essential for cardiac disease diagnosis and treatment planning. However, achieving optimal feature correspondence is challenging due to intensity variations across modalities and spatial misalignment caused by inconsistent slice acquisition protocols. We propose CAA-Seg, a composite alignment-aware framework that addresses these challenges through a two-stage approach. First, we introduce a selective slice alignment method that dynamically identifies and aligns anatomically corresponding slice pairs while excluding mismatched sections, ensuring reliable spatial correspondence between sequences. Second, we develop a hierarchical alignment network that processes multi-sequence features at different semantic levels, i.e., local deformation correction modules address geometric variations in low-level features, while global semantic fusion blocks enable semantic fusion at high levels where intensity discrepancies diminish. We validate our method on a large-scale dataset comprising 397 patients. Experimental results show that our proposed CAA-Seg achieves superior performance on most evaluation metrics, with particularly strong results in myocardial infarction segmentation, representing a substantial 5.54% improvement over state-of-the-art approaches. The code is available at https://github.com/yifangao112/CAA-Seg.
Abstract:Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.