Abstract:Resembling the rapid learning capability of human, low-shot learning empowers vision systems to understand new concepts by training with few samples. Leading approaches derived from meta-learning on images with a single visual object. Obfuscated by a complex background and multiple objects in one image, they are hard to promote the research of low-shot object detection/segmentation. In this work, we present a flexible and general methodology to achieve these tasks. Our work extends Faster /Mask R-CNN by proposing meta-learning over RoI (Region-of-Interest) features instead of a full image feature. This simple spirit disentangles multi-object information merged with the background, without bells and whistles, enabling Faster /Mask R-CNN turn into a meta-learner to achieve the tasks. Specifically, we introduce a Predictor-head Remodeling Network (PRN) that shares its main backbone with Faster /Mask R-CNN. PRN receives images containing low-shot objects with their bounding boxes or masks to infer their class attentive vectors. The vectors take channel-wise soft-attention on RoI features, remodeling those R-CNN predictor heads to detect or segment the objects that are consistent with the classes these vectors represent. In our experiments, Meta R-CNN yields the state of the art in low-shot object detection and improves low-shot object segmentation by Mask R-CNN.
Abstract:Explanation and high-order reasoning capabilities are crucial for real-world visual question answering with diverse levels of inference complexity (e.g., what is the dog that is near the girl playing with?) and important for users to understand and diagnose the trustworthiness of the system. Current VQA benchmarks on natural images with only an accuracy metric end up pushing the models to exploit the dataset biases and cannot provide any interpretable justification, which severally hinders advances in high-level question answering. In this work, we propose a new HVQR benchmark for evaluating explainable and high-order visual question reasoning ability with three distinguishable merits: 1) the questions often contain one or two relationship triplets, which requires the model to have the ability of multistep reasoning to predict plausible answers; 2) we provide an explicit evaluation on a multistep reasoning process that is constructed with image scene graphs and commonsense knowledge bases; and 3) each relationship triplet in a large-scale knowledge base only appears once among all questions, which poses challenges for existing networks that often attempt to overfit the knowledge base that already appears in the training set and enforces the models to handle unseen questions and knowledge fact usage. We also propose a new knowledge-routed modular network (KM-net) that incorporates the multistep reasoning process over a large knowledge base into visual question reasoning. An extensive dataset analysis and comparisons with existing models on the HVQR benchmark show that our benchmark provides explainable evaluations, comprehensive reasoning requirements and realistic challenges of VQA systems, as well as our KM-net's superiority in terms of accuracy and explanation ability.
Abstract:A broad range of cross-$m$-domain generation researches boil down to matching a joint distribution by deep generative models (DGMs). Hitherto algorithms excel in pairwise domains while as $m$ increases, remain struggling to scale themselves to fit a joint distribution. In this paper, we propose a domain-scalable DGM, i.e., MMI-ALI for $m$-domain joint distribution matching. As an $m$-domain ensemble model of ALIs \cite{dumoulin2016adversarially}, MMI-ALI is adversarially trained with maximizing Multivariate Mutual Information (MMI) w.r.t. joint variables of each pair of domains and their shared feature. The negative MMIs are upper bounded by a series of feasible losses that provably lead to matching $m$-domain joint distributions. MMI-ALI linearly scales as $m$ increases and thus, strikes a right balance between efficacy and scalability. We evaluate MMI-ALI in diverse challenging $m$-domain scenarios and verify its superiority.
Abstract:(Unsupervised) Domain Adaptation (DA) seeks for classifying target instances when solely provided with source labeled and target unlabeled examples for training. Learning domain-invariant features helps to achieve this goal, whereas it underpins unlabeled samples drawn from a single or multiple explicit target domains (Multi-target DA). In this paper, we consider a more realistic transfer scenario: our target domain is comprised of multiple sub-targets implicitly blended with each other, so that learners could not identify which sub-target each unlabeled sample belongs to. This Blending-target Domain Adaptation (BTDA) scenario commonly appears in practice and threatens the validities of most existing DA algorithms, due to the presence of domain gaps and categorical misalignments among these hidden sub-targets. To reap the transfer performance gains in this new scenario, we propose Adversarial Meta-Adaptation Network (AMEAN). AMEAN entails two adversarial transfer learning processes. The first is a conventional adversarial transfer to bridge our source and mixed target domains. To circumvent the intra-target category misalignment, the second process presents as ``learning to adapt'': It deploys an unsupervised meta-learner receiving target data and their ongoing feature-learning feedbacks, to discover target clusters as our ``meta-sub-target'' domains. These meta-sub-targets auto-design our meta-sub-target DA loss, which empirically eliminates the implicit category mismatching in our mixed target. We evaluate AMEAN and a variety of DA algorithms in three benchmarks under the BTDA setup. Empirical results show that BTDA is a quite challenging transfer setup for most existing DA algorithms, yet AMEAN significantly outperforms these state-of-the-art baselines and effectively restrains the negative transfer effects in BTDA.
Abstract:Interactive fashion image manipulation, which enables users to edit images with sketches and color strokes, is an interesting research problem with great application value. Existing works often treat it as a general inpainting task and do not fully leverage the semantic structural information in fashion images. Moreover, they directly utilize conventional convolution and normalization layers to restore the incomplete image, which tends to wash away the sketch and color information. In this paper, we propose a novel Fashion Editing Generative Adversarial Network (FE-GAN), which is capable of manipulating fashion images by free-form sketches and sparse color strokes. FE-GAN consists of two modules: 1) a free-form parsing network that learns to control the human parsing generation by manipulating sketch and color; 2) a parsing-aware inpainting network that renders detailed textures with semantic guidance from the human parsing map. A new attention normalization layer is further applied at multiple scales in the decoder of the inpainting network to enhance the quality of the synthesized image. Extensive experiments on high-resolution fashion image datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods on image manipulation.
Abstract:Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches.
Abstract:Prior highly-tuned human parsing models tend to fit towards each dataset in a specific domain or with discrepant label granularity, and can hardly be adapted to other human parsing tasks without extensive re-training. In this paper, we aim to learn a single universal human parsing model that can tackle all kinds of human parsing needs by unifying label annotations from different domains or at various levels of granularity. This poses many fundamental learning challenges, e.g. discovering underlying semantic structures among different label granularity, performing proper transfer learning across different image domains, and identifying and utilizing label redundancies across related tasks. To address these challenges, we propose a new universal human parsing agent, named "Graphonomy", which incorporates hierarchical graph transfer learning upon the conventional parsing network to encode the underlying label semantic structures and propagate relevant semantic information. In particular, Graphonomy first learns and propagates compact high-level graph representation among the labels within one dataset via Intra-Graph Reasoning, and then transfers semantic information across multiple datasets via Inter-Graph Transfer. Various graph transfer dependencies (\eg, similarity, linguistic knowledge) between different datasets are analyzed and encoded to enhance graph transfer capability. By distilling universal semantic graph representation to each specific task, Graphonomy is able to predict all levels of parsing labels in one system without piling up the complexity. Experimental results show Graphonomy effectively achieves the state-of-the-art results on three human parsing benchmarks as well as advantageous universal human parsing performance.
Abstract:Generating long and semantic-coherent reports to describe medical images poses great challenges towards bridging visual and linguistic modalities, incorporating medical domain knowledge, and generating realistic and accurate descriptions. We propose a novel Knowledge-driven Encode, Retrieve, Paraphrase (KERP) approach which reconciles traditional knowledge- and retrieval-based methods with modern learning-based methods for accurate and robust medical report generation. Specifically, KERP decomposes medical report generation into explicit medical abnormality graph learning and subsequent natural language modeling. KERP first employs an Encode module that transforms visual features into a structured abnormality graph by incorporating prior medical knowledge; then a Retrieve module that retrieves text templates based on the detected abnormalities; and lastly, a Paraphrase module that rewrites the templates according to specific cases. The core of KERP is a proposed generic implementation unit---Graph Transformer (GTR) that dynamically transforms high-level semantics between graph-structured data of multiple domains such as knowledge graphs, images and sequences. Experiments show that the proposed approach generates structured and robust reports supported with accurate abnormality description and explainable attentive regions, achieving the state-of-the-art results on two medical report benchmarks, with the best medical abnormality and disease classification accuracy and improved human evaluation performance.
Abstract:Beyond current conversational chatbots or task-oriented dialogue systems that have attracted increasing attention, we move forward to develop a dialogue system for automatic medical diagnosis that converses with patients to collect additional symptoms beyond their self-reports and automatically makes a diagnosis. Besides the challenges for conversational dialogue systems (e.g. topic transition coherency and question understanding), automatic medical diagnosis further poses more critical requirements for the dialogue rationality in the context of medical knowledge and symptom-disease relations. Existing dialogue systems (Madotto, Wu, and Fung 2018; Wei et al. 2018; Li et al. 2017) mostly rely on data-driven learning and cannot be able to encode extra expert knowledge graph. In this work, we propose an End-to-End Knowledge-routed Relational Dialogue System (KR-DS) that seamlessly incorporates rich medical knowledge graph into the topic transition in dialogue management, and makes it cooperative with natural language understanding and natural language generation. A novel Knowledge-routed Deep Q-network (KR-DQN) is introduced to manage topic transitions, which integrates a relational refinement branch for encoding relations among different symptoms and symptom-disease pairs, and a knowledge-routed graph branch for topic decision-making. Extensive experiments on a public medical dialogue dataset show our KR-DS significantly beats state-of-the-art methods (by more than 8% in diagnosis accuracy). We further show the superiority of our KR-DS on a newly collected medical dialogue system dataset, which is more challenging retaining original self-reports and conversational data between patients and doctors.
Abstract:Virtual try-on system under arbitrary human poses has huge application potential, yet raises quite a lot of challenges, e.g. self-occlusions, heavy misalignment among diverse poses, and diverse clothes textures. Existing methods aim at fitting new clothes into a person can only transfer clothes on the fixed human pose, but still show unsatisfactory performances which often fail to preserve the identity, lose the texture details, and decrease the diversity of poses. In this paper, we make the first attempt towards multi-pose guided virtual try-on system, which enables transfer clothes on a person image under diverse poses. Given an input person image, a desired clothes image, and a desired pose, the proposed Multi-pose Guided Virtual Try-on Network (MG-VTON) can generate a new person image after fitting the desired clothes into the input image and manipulating human poses. Our MG-VTON is constructed in three stages: 1) a desired human parsing map of the target image is synthesized to match both the desired pose and the desired clothes shape; 2) a deep Warping Generative Adversarial Network (Warp-GAN) warps the desired clothes appearance into the synthesized human parsing map and alleviates the misalignment problem between the input human pose and desired human pose; 3) a refinement render utilizing multi-pose composition masks recovers the texture details of clothes and removes some artifacts. Extensive experiments on well-known datasets and our newly collected largest virtual try-on benchmark demonstrate that our MG-VTON significantly outperforms all state-of-the-art methods both qualitatively and quantitatively with promising multi-pose virtual try-on performances.