Nanjing University of Science and Technology, Nanjing, China
Abstract:We study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal robust policy purely from an offline dataset that can perform well in perturbed environments. We propose a generic algorithm framework \underline{D}oubly \underline{P}essimistic \underline{M}odel-based \underline{P}olicy \underline{O}ptimization ($\texttt{P}^2\texttt{MPO}$) for robust offline RL, which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. The \emph{double pessimism} principle is crucial to overcome the distributional shift incurred by i) the mismatch between behavior policy and the family of target policies; and ii) the perturbation of the nominal model. Under certain accuracy assumptions on the model estimation subroutine, we show that $\texttt{P}^2\texttt{MPO}$ is provably efficient with \emph{robust partial coverage data}, which means that the offline dataset has good coverage of the distributions induced by the optimal robust policy and perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples including tabular Robust Markov Decision Process (RMDP), factored RMDP, and RMDP with kernel and neural function approximations, we show that $\texttt{P}^2\texttt{MPO}$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the number of trajectories in the offline dataset. Notably, these models, except for the tabular case, are first identified and proven tractable by this paper. To the best of our knowledge, we first propose a general learning principle -- double pessimism -- for robust offline RL and show that it is provably efficient in the context of general function approximations.
Abstract:The proximal policy optimization (PPO) algorithm stands as one of the most prosperous methods in the field of reinforcement learning (RL). Despite its success, the theoretical understanding of PPO remains deficient. Specifically, it is unclear whether PPO or its optimistic variants can effectively solve linear Markov decision processes (MDPs), which are arguably the simplest models in RL with function approximation. To bridge this gap, we propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback, and establish a $\tilde{\mathcal{O}}(d^{3/4}H^2K^{3/4})$ regret for it. Here $d$ is the ambient dimension of linear MDPs, $H$ is the length of each episode, and $K$ is the number of episodes. Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both stochastic linear MDPs and adversarial linear MDPs with full information. Additionally, our algorithm design features a novel multi-batched updating mechanism and the theoretical analysis utilizes a new covering number argument of value and policy classes, which might be of independent interest.
Abstract:Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature focus on addressing this challenge through global-based or local-based representation approaches. The former employs global feature representations for recognization, which may lack fine-grained information. The latter captures local relationships with complex structures, possibly leading to high model complexity. To address the above challenges, this article proposes a novel framework called SGML-Net for few-shot fine-grained visual recognition. SGML-Net incorporates auxiliary information via saliency detection to guide discriminative representation learning, achieving high performance and low model complexity. Specifically, SGML-Net utilizes the saliency detection model to emphasize the key regions of each sub-category, providing a strong prior for representation learning. SGML-Net transfers such prior with two independent branches in a mutual learning paradigm. To achieve effective transfer, SGML-Net leverages the relationships among different regions, making the representation more informative and thus providing better guidance. The auxiliary branch is excluded upon the transfer's completion, ensuring low model complexity in deployment. The proposed approach is empirically evaluated on three widely-used benchmarks, demonstrating its superior performance.
Abstract:Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed, under the condition of preserving old disease knowledge. In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge. To address the catastrophic forgetting issue, a novel adapter-based strategy is proposed to help effectively learn a set of new diseases at each round (or task) of continual learning, without changing the shared feature extractor. The learnable lightweight task-specific adapter(s) can be flexibly designed (e.g., two convolutional layers) and then added to the pretrained and fixed feature extractor. Together with a specially designed task-specific head which absorbs all previously learned old diseases as a single 'out-of-distribution' category, task-specific adapter(s) can help the pretrained feature extractor more effectively extract discriminative features between diseases. In addition, a simple yet effective fine-tuning is applied to collaboratively fine-tune multiple task-specific heads such that outputs from different heads are comparable and consequently the appropriate classifier head can be more accurately selected during model inference. Extensive empirical evaluations on three image datasets demonstrate the superior performance of the proposed method in continual learning of new diseases. The source code will be released publicly.
Abstract:Deep network-based image and video Compressive Sensing(CS) has attracted increasing attentions in recent years. However, in the existing deep network-based CS methods, a simple stacked convolutional network is usually adopted, which not only weakens the perception of rich contextual prior knowledge, but also limits the exploration of the correlations between temporal video frames. In this paper, we propose a novel Hierarchical InTeractive Video CS Reconstruction Network(HIT-VCSNet), which can cooperatively exploit the deep priors in both spatial and temporal domains to improve the reconstruction quality. Specifically, in the spatial domain, a novel hierarchical structure is designed, which can hierarchically extract deep features from keyframes and non-keyframes. In the temporal domain, a novel hierarchical interaction mechanism is proposed, which can cooperatively learn the correlations among different frames in the multiscale space. Extensive experiments manifest that the proposed HIT-VCSNet outperforms the existing state-of-the-art video and image CS methods in a large margin.
Abstract:Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially significant repercussions. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) as a means of addressing this problem, wherein generative models are fine-tuned using RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment of generative models, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models more effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently assembles a streaming dataset. This dataset serves as the basis for aligning the generative model and can be employed under both offline and online settings. Notably, the sample generation process within RAFT is gradient-free, rendering it compatible with black-box generators. Through extensive experiments, we demonstrate that our proposed algorithm exhibits strong performance in the context of both large language models and diffusion models.
Abstract:This paper presents a new annotation method called Sparse Annotation (SA) for crowd counting, which reduces human labeling efforts by sparsely labeling individuals in an image. We argue that sparse labeling can reduce the redundancy of full annotation and capture more diverse information from distant individuals that is not fully captured by Partial Annotation methods. Besides, we propose a point-based Progressive Point Matching network (PPM) to better explore the crowd from the whole image with sparse annotation, which includes a Proposal Matching Network (PMN) and a Performance Restoration Network (PRN). The PMN generates pseudo-point samples using a basic point classifier, while the PRN refines the point classifier with the pseudo points to maximize performance. Our experimental results show that PPM outperforms previous semi-supervised crowd counting methods with the same amount of annotation by a large margin and achieves competitive performance with state-of-the-art fully-supervised methods.
Abstract:Deep learning generally suffers from enormous computational resources and time-consuming training processes. Broad Learning System (BLS) and its convolutional variants have been proposed to mitigate these issues and have achieved superb performance in image classification. However, the existing convolutional-based broad learning system (C-BLS) either lacks an efficient training method and incremental learning capability or suffers from poor performance. To this end, we propose a convolutional broad learning system (ConvBLS) based on the spherical K-means (SKM) algorithm and two-stage multi-scale (TSMS) feature fusion, which consists of the convolutional feature (CF) layer, convolutional enhancement (CE) layer, TSMS feature fusion layer, and output layer. First, unlike the current C-BLS, the simple yet efficient SKM algorithm is utilized to learn the weights of CF layers. Compared with random filters, the SKM algorithm makes the CF layer learn more comprehensive spatial features. Second, similar to the vanilla BLS, CE layers are established to expand the feature space. Third, the TSMS feature fusion layer is proposed to extract more effective multi-scale features through the integration of CF layers and CE layers. Thanks to the above design and the pseudo-inverse calculation of the output layer weights, our proposed ConvBLS method is unprecedentedly efficient and effective. Finally, the corresponding incremental learning algorithms are presented for rapid remodeling if the model deems to expand. Experiments and comparisons demonstrate the superiority of our method.
Abstract:Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects. Although the dense features extracted by employing segmentation maps and bounding boxes allow networks to perform SSL for each object, we show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding. We address this by introducing three data augmentation strategies, and leveraging them in (i) a decoupling module that aims to robustify the network to variations in the object's surroundings, and (ii) a de-positioning module that encourages the network to discard positional object information. We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection. Our extensive experiments evidence the better generalization of our method compared to the SOTA dense SSL methods
Abstract:Self-supervised learning (SSL) has the potential to benefit many applications, particularly those where manually annotating data is cumbersome. One such situation is the semantic segmentation of point clouds. In this context, existing methods employ contrastive learning strategies and define positive pairs by performing various augmentation of point clusters in a single frame. As such, these methods do not exploit the temporal nature of LiDAR data. In this paper, we introduce an SSL strategy that leverages positive pairs in both the spatial and temporal domain. To this end, we design (i) a point-to-cluster learning strategy that aggregates spatial information to distinguish objects; and (ii) a cluster-to-cluster learning strategy based on unsupervised object tracking that exploits temporal correspondences. We demonstrate the benefits of our approach via extensive experiments performed by self-supervised training on two large-scale LiDAR datasets and transferring the resulting models to other point cloud segmentation benchmarks. Our results evidence that our method outperforms the state-of-the-art point cloud SSL methods.