Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Boosting the interpretability of clinical risk scores with intervention predictions


Jul 06, 2022
Eric Loreaux, Ke Yu, Jonas Kemp, Martin Seneviratne, Christina Chen, Subhrajit Roy, Ivan Protsyuk, Natalie Harris, Alexander D'Amour, Steve Yadlowsky, Ming-Jun Chen

Add code

* Accepted by DSHealth on KDD 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Disability prediction in multiple sclerosis using performance outcome measures and demographic data


Apr 08, 2022
Subhrajit Roy, Diana Mincu, Lev Proleev, Negar Rostamzadeh, Chintan Ghate, Natalie Harris, Christina Chen, Jessica Schrouff, Nenad Tomasev, Fletcher Lee Hartsell, Katherine Heller

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Healthsheet: Development of a Transparency Artifact for Health Datasets


Feb 26, 2022
Negar Rostamzadeh, Diana Mincu, Subhrajit Roy, Andrew Smart, Lauren Wilcox, Mahima Pushkarna, Jessica Schrouff, Razvan Amironesei, Nyalleng Moorosi, Katherine Heller

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Maintaining fairness across distribution shift: do we have viable solutions for real-world applications?


Feb 02, 2022
Jessica Schrouff, Natalie Harris, Oluwasanmi Koyejo, Ibrahim Alabdulmohsin, Eva Schnider, Krista Opsahl-Ong, Alex Brown, Subhrajit Roy, Diana Mincu, Christina Chen, Awa Dieng, Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine Heller, Silvia Chiappa, Alexander D'Amour

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A collection of the accepted abstracts for the Machine Learning for Health (ML4H) symposium 2021


Nov 30, 2021
Fabian Falck, Yuyin Zhou, Emma Rocheteau, Liyue Shen, Luis Oala, Girmaw Abebe, Subhrajit Roy, Stephen Pfohl, Emily Alsentzer, Matthew B. A. McDermott

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

ML4H Abstract Track 2020


Nov 19, 2020
Emily Alsentzer, Matthew B. A. McDermott, Fabian Falck, Suproteem K. Sarkar, Subhrajit Roy, Stephanie L. Hyland

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Type-Driven Automated Learning with Lale


May 24, 2019
Martin Hirzel, Kiran Kate, Avraham Shinnar, Subhrajit Roy, Parikshit Ram

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Machine Learning for removing EEG artifacts: Setting the benchmark


Mar 19, 2019
Subhrajit Roy

Add code

* 2 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A semi-supervised deep learning algorithm for abnormal EEG identification


Mar 19, 2019
Subhrajit Roy, Kiran Kate, Martin Hirzel

Add code

* 2 pages, 3 figures, conference 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

SeizureNet: A Deep Convolutional Neural Network for Accurate Seizure Type Classification and Seizure Detection


Mar 08, 2019
Umar Asif, Subhrajit Roy, Jianbin Tang, Stefan Harrer

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>