Nanyang Technological University
Abstract:Inspired by the outstanding zero-shot capability of vision language models (VLMs) in image classification tasks, open-vocabulary object detection has attracted increasing interest by distilling the broad VLM knowledge into detector training. However, most existing open-vocabulary detectors learn by aligning region embeddings with categorical labels (e.g., bicycle) only, disregarding the capability of VLMs on aligning visual embeddings with fine-grained text description of object parts (e.g., pedals and bells). This paper presents DVDet, a Descriptor-Enhanced Open Vocabulary Detector that introduces conditional context prompts and hierarchical textual descriptors that enable precise region-text alignment as well as open-vocabulary detection training in general. Specifically, the conditional context prompt transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training. In addition, we introduce large language models as an interactive and implicit knowledge repository which enables iterative mining and refining visually oriented textual descriptors for precise region-text alignment. Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.
Abstract:The recent Segment Anything Model (SAM) has demonstrated remarkable zero-shot capability and flexible geometric prompting in general image segmentation. However, SAM often struggles when handling various unconventional images, such as aerial, medical, and non-RGB images. This paper presents CAT-SAM, a ConditionAl Tuning network that adapts SAM toward various unconventional target tasks with just few-shot target samples. CAT-SAM freezes the entire SAM and adapts its mask decoder and image encoder simultaneously with a small number of learnable parameters. The core design is a prompt bridge structure that enables decoder-conditioned joint tuning of the heavyweight image encoder and the lightweight mask decoder. The bridging maps the prompt token of the mask decoder to the image encoder, fostering synergic adaptation of the encoder and the decoder with mutual benefits. We develop two representative tuning strategies for the image encoder which leads to two CAT-SAM variants: one injecting learnable prompt tokens in the input space and the other inserting lightweight adapter networks. Extensive experiments over 11 unconventional tasks show that both CAT-SAM variants achieve superior target segmentation performance consistently even under the very challenging one-shot adaptation setup. Project page: \url{https://xiaoaoran.github.io/projects/CAT-SAM}
Abstract:Cross-Domain Few-Shot Segmentation (CD-FSS) poses the challenge of segmenting novel categories from a distinct domain using only limited exemplars. In this paper, we undertake a comprehensive study of CD-FSS and uncover two crucial insights: (i) the necessity of a fine-tuning stage to effectively transfer the learned meta-knowledge across domains, and (ii) the overfitting risk during the na\"ive fine-tuning due to the scarcity of novel category examples. With these insights, we propose a novel cross-domain fine-tuning strategy that addresses the challenging CD-FSS tasks. We first design Bi-directional Few-shot Prediction (BFP), which establishes support-query correspondence in a bi-directional manner, crafting augmented supervision to reduce the overfitting risk. Then we further extend BFP into Iterative Few-shot Adaptor (IFA), which is a recursive framework to capture the support-query correspondence iteratively, targeting maximal exploitation of supervisory signals from the sparse novel category samples. Extensive empirical evaluations show that our method significantly outperforms the state-of-the-arts (+7.8\%), which verifies that IFA tackles the cross-domain challenges and mitigates the overfitting simultaneously. Code will be made available.
Abstract:Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space. However, most existing studies were conducted under a supervised setup which cannot scale well while handling various new data. Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored. In this work, we design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features. DA-BEV introduces the idea of query into the domain adaptation framework to derive useful information from image-view and BEV features. It consists of two query-based designs, namely, query-based adversarial learning (QAL) and query-based self-training (QST), which exploits image-view features or BEV features to regularize the adaptation of the other. Extensive experiments show that DA-BEV achieves superior domain adaptive BEV perception performance consistently across multiple datasets and tasks such as 3D object detection and 3D scene segmentation.
Abstract:Large-vocabulary object detectors (LVDs) aim to detect objects of many categories, which learn super objectness features and can locate objects accurately while applied to various downstream data. However, LVDs often struggle in recognizing the located objects due to domain discrepancy in data distribution and object vocabulary. At the other end, recent vision-language foundation models such as CLIP demonstrate superior open-vocabulary recognition capability. This paper presents KGD, a Knowledge Graph Distillation technique that exploits the implicit knowledge graphs (KG) in CLIP for effectively adapting LVDs to various downstream domains. KGD consists of two consecutive stages: 1) KG extraction that employs CLIP to encode downstream domain data as nodes and their feature distances as edges, constructing KG that inherits the rich semantic relations in CLIP explicitly; and 2) KG encapsulation that transfers the extracted KG into LVDs to enable accurate cross-domain object classification. In addition, KGD can extract both visual and textual KG independently, providing complementary vision and language knowledge for object localization and object classification in detection tasks over various downstream domains. Experiments over multiple widely adopted detection benchmarks show that KGD outperforms the state-of-the-art consistently by large margins.
Abstract:Segment Anything Models (SAMs) like SEEM and SAM have demonstrated great potential in learning to segment anything. The core design of SAMs lies with Promptable Segmentation, which takes a handcrafted prompt as input and returns the expected segmentation mask. SAMs work with two types of prompts including spatial prompts (e.g., points) and semantic prompts (e.g., texts), which work together to prompt SAMs to segment anything on downstream datasets. Despite the important role of prompts, how to acquire suitable prompts for SAMs is largely under-explored. In this work, we examine the architecture of SAMs and identify two challenges for learning effective prompts for SAMs. To this end, we propose spatial-semantic prompt learning (SSPrompt) that learns effective semantic and spatial prompts for better SAMs. Specifically, SSPrompt introduces spatial prompt learning and semantic prompt learning, which optimize spatial prompts and semantic prompts directly over the embedding space and selectively leverage the knowledge encoded in pre-trained prompt encoders. Extensive experiments show that SSPrompt achieves superior image segmentation performance consistently across multiple widely adopted datasets.
Abstract:Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
Abstract:Large Vision-Language Models (LVLMs) have advanced considerably, intertwining visual recognition and language understanding to generate content that is not only coherent but also contextually attuned. Despite their success, LVLMs still suffer from the issue of object hallucinations, where models generate plausible yet incorrect outputs that include objects that do not exist in the images. To mitigate this issue, we introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs. The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations. This adjustment ensures the generated content is closely grounded to visual inputs, resulting in contextually accurate outputs. Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families. Beyond mitigating object hallucinations, VCD also excels in general LVLM benchmarks, highlighting its wide-ranging applicability.
Abstract:The advancement of visual intelligence is intrinsically tethered to the availability of data. In parallel, generative Artificial Intelligence (AI) has unlocked the potential to create synthetic images that closely resemble real-world photographs, which prompts a compelling inquiry: how visual intelligence benefit from the advance of generative AI? This paper explores the innovative concept of harnessing these AI-generated images as a new data source, reshaping traditional model paradigms in visual intelligence. In contrast to real data, AI-generated data sources exhibit remarkable advantages, including unmatched abundance and scalability, the rapid generation of vast datasets, and the effortless simulation of edge cases. Built on the success of generative AI models, we examines the potential of their generated data in a range of applications, from training machine learning models to simulating scenarios for computational modeling, testing, and validation. We probe the technological foundations that support this groundbreaking use of generative AI, engaging in an in-depth discussion on the ethical, legal, and practical considerations that accompany this transformative paradigm shift. Through an exhaustive survey of current technologies and applications, this paper presents a comprehensive view of the synthetic era in visual intelligence. A project associated with this paper can be found at https://github.com/mwxely/AIGS .
Abstract:Vision-Language Pre-training has demonstrated its remarkable zero-shot recognition ability and potential to learn generalizable visual representations from language supervision. Taking a step ahead, language-supervised semantic segmentation enables spatial localization of textual inputs by learning pixel grouping solely from image-text pairs. Nevertheless, the state-of-the-art suffers from clear semantic gaps between visual and textual modality: plenty of visual concepts appeared in images are missing in their paired captions. Such semantic misalignment circulates in pre-training, leading to inferior zero-shot performance in dense predictions due to insufficient visual concepts captured in textual representations. To close such semantic gap, we propose Concept Curation (CoCu), a pipeline that leverages CLIP to compensate for the missing semantics. For each image-text pair, we establish a concept archive that maintains potential visually-matched concepts with our proposed vision-driven expansion and text-to-vision-guided ranking. Relevant concepts can thus be identified via cluster-guided sampling and fed into pre-training, thereby bridging the gap between visual and textual semantics. Extensive experiments over a broad suite of 8 segmentation benchmarks show that CoCu achieves superb zero-shot transfer performance and greatly boosts language-supervised segmentation baseline by a large margin, suggesting the value of bridging semantic gap in pre-training data.