Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, Peng Cheng Laboratory, Shenzhen, China
Abstract:Multimodal deep learning utilizing imaging and diagnostic reports has made impressive progress in the field of medical imaging diagnostics, demonstrating a particularly strong capability for auxiliary diagnosis in cases where sufficient annotation information is lacking. Nonetheless, localizing diseases accurately without detailed positional annotations remains a challenge. Although existing methods have attempted to utilize local information to achieve fine-grained semantic alignment, their capability in extracting the fine-grained semantics of the comprehensive contextual within reports is limited. To solve this problem, we introduce a new method that takes full sentences from textual reports as the basic units for local semantic alignment. Our approach combines chest X-ray images with their corresponding textual reports, performing contrastive learning at both global and local levels. The leading results obtained by our method on multiple datasets confirm its efficacy in the task of lesion localization.
Abstract:Accurate segmentation of the retinogeniculate visual pathway (RGVP) aids in the diagnosis and treatment of visual disorders by identifying disruptions or abnormalities within the pathway. However, the complex anatomical structure and connectivity of RGVP make it challenging to achieve accurate segmentation. In this study, we propose a novel Modality Exchange Network (ME-Net) that effectively utilizes multi-modal magnetic resonance (MR) imaging information to enhance RGVP segmentation. Our ME-Net has two main contributions. Firstly, we introduce an effective multi-modal soft-exchange technique. Specifically, we design a channel and spatially mixed attention module to exchange modality information between T1-weighted and fractional anisotropy MR images. Secondly, we propose a cross-fusion module that further enhances the fusion of information between the two modalities. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches in terms of RGVP segmentation performance.
Abstract:Existing contrastive language-image pre-training aims to learn a joint representation by matching abundant image-text pairs. However, the number of image-text pairs in medical datasets is usually orders of magnitude smaller than that in natural datasets. Besides, medical image-text pairs often involve numerous complex fine-grained correspondences. This paper aims to enhance the data efficiency by introducing multiple-to-multiple local relationship modeling to capture denser supervisions. More specifically, we propose a Medical Language-Image Pre-training (MLIP) framework, which exploits the limited image-text medical data more efficiently through patch-sentence matching. Furthermore, we introduce a masked contrastive learning strategy with semantic integrity estimation to reduce redundancy in images while preserving the underlying semantics. Our evaluation results show that MLIP outperforms previous work in zero/few-shot classification and few-shot segmentation tasks by a large margin.
Abstract:Deep neural network approximation of nonlinear operators, commonly referred to as DeepONet, has so far proven capable of approximating PDE backstepping designs in which a single Goursat-form PDE governs a single feedback gain function. In boundary control of coupled PDEs, coupled Goursat-form PDEs govern two or more gain kernels - a PDE structure unaddressed thus far with DeepONet. In this note we open the subject of approximating systems of gain kernel PDEs for hyperbolic PDE plants by considering a simple counter-convecting $2\times 2$ coupled system in whose control a $2\times 2$ Goursat form kernel PDE system arises. Such a coupled kernel PDE problem arises in several canonical $2\times 2$ hyperbolic PDE problems: oil drilling, Saint-Venant model of shallow water waves, and Aw-Rascle model of stop-and-go instability in congested traffic flow. In this paper, we establish the continuity of the mapping from (a total of five) plant PDE functional coefficients to the kernel PDE solutions, prove the existence of an arbitrarily close DeepONet approximation to the kernel PDEs, and establish that the DeepONet-approximated gains guarantee stabilization when replacing the exact backstepping gain kernels. The DeepONet operator speeds the computation of the controller gains by multiple orders of magnitude and its theoretically proven stabilizing capability is illustrated by simulations.
Abstract:Background: Deep learning has presented great potential in accurate MR image segmentation when enough labeled data are provided for network optimization. However, manually annotating 3D MR images is tedious and time-consuming, requiring experts with rich domain knowledge and experience. Purpose: To build a deep learning method exploring sparse annotations, namely only a single 2D slice label for each 3D training MR image. Population: 3D MR images of 150 subjects from two publicly available datasets were included. Among them, 50 (1,377 image slices) are for prostate segmentation. The other 100 (8,800 image slices) are for left atrium segmentation. Five-fold cross-validation experiments were carried out utilizing the first dataset. For the second dataset, 80 subjects were used for training and 20 were used for testing. Assessment: A collaborative learning method by integrating the strengths of semi-supervised and self-supervised learning schemes was developed. The method was trained using labeled central slices and unlabeled non-central slices. Segmentation performance on testing set was reported quantitatively and qualitatively. Results: Compared to FS-LCS, MT, UA-MT, DCT-Seg, ICT, and AC-MT, the proposed method achieved a substantial improvement in segmentation accuracy, increasing the mean B-IoU significantly by more than 10.0% for prostate segmentation (proposed method B-IoU: 70.3% vs. ICT B-IoU: 60.3%) and by more than 6.0% for left atrium segmentation (proposed method B-IoU: 66.1% vs. ICT B-IoU: 60.1%).
Abstract:Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique.However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore,utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve super reconstruction quality of T2-weighted image by feature fusion. Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image. Finally, the objective T2 is synthesized by extracting the sub-T2 data of each part. Experimental results showed that our combined technique can achieve comparable or better results than using traditional k-space parallel imaging(SAKE) that processes each contrast independently.
Abstract:In the field of statistical physics, machine learning has gained significant popularity and has achieved remarkable results in recent studies on phase transitions.In this paper, we apply Principal Component Analysis (PCA) and Autoencoder(AE) based on Unsupervised learning to study the various configurations of the percolation model in equilibrium phase transition. In certain phase transition models, such as the DP model in non-equilibrium phase transitions, the order parameter is particle density. However, in some other phase transition models, such as the percolation model, it is not. This study involved randomizing and selecting percolation graphs to be used as input for a neural network, and analyzed the obtained results, indicating that the outputs of the single latent variable of AE and the first principal component of PCA are signals related to particle density.
Abstract:Recently, multi-modal vision-language foundation models have gained significant attention in the medical field. While these models offer great opportunities, they still face a number of challenges, such as the requirement for fine-grained knowledge understanding in computer-aided diagnosis and capability of utilizing very limited or no task-specific labeled data in real-world clinical applications. In this study, we present MaCo, a novel multi-modal medical foundation model that explores masked contrastive learning to achieve granular alignment and zero-shot learning for a variety of medical imaging tasks. MaCo incorporates a correlation weighting mechanism to adjust the correlation between masked image patches and their corresponding reports, thereby enhancing the representation learning capabilities. We evaluate MaCo on six well-known open-source X-ray datasets, and the experimental results show it outperforms seven state-of-the-art approaches for classification, segmentation, and zero-shot phase grounding, demonstrating its great potential to promote a wide range of medical image analysis tasks.
Abstract:Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computational expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely, ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus enforce the model generalize to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with six state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
Abstract:JPEG is one of the most popular image compression methods. It is beneficial to compress those existing JPEG files without introducing additional distortion. In this paper, we propose a deep learning based method to further compress JPEG images losslessly. Specifically, we propose a Multi-Level Parallel Conditional Modeling (ML-PCM) architecture, which enables parallel decoding in different granularities. First, luma and chroma are processed independently to allow parallel coding. Second, we propose pipeline parallel context model (PPCM) and compressed checkerboard context model (CCCM) for the effective conditional modeling and efficient decoding within luma and chroma components. Our method has much lower latency while achieves better compression ratio compared with previous SOTA. After proper software optimization, we can obtain a good throughput of 57 FPS for 1080P images on NVIDIA T4 GPU. Furthermore, combined with quantization, our approach can also act as a lossy JPEG codec which has obvious advantage over SOTA lossy compression methods in high bit rate (bpp$>0.9$).