Abstract:Whether a video can be compressed at an extreme compression rate as low as 0.01%? To this end, we achieve the compression rate as 0.02% at some cases by introducing Generative Video Compression (GVC), a new framework that redefines the limits of video compression by leveraging modern generative video models to achieve extreme compression rates while preserving a perception-centric, task-oriented communication paradigm, corresponding to Level C of the Shannon-Weaver model. Besides, How we trade computation for compression rate or bandwidth? GVC answers this question by shifting the burden from transmission to inference: it encodes video into extremely compact representations and delegates content reconstruction to the receiver, where powerful generative priors synthesize high-quality video from minimal transmitted information. Is GVC practical and deployable? To ensure practical deployment, we propose a compression-computation trade-off strategy, enabling fast inference on consume-grade GPUs. Within the AI Flow framework, GVC opens new possibility for video communication in bandwidth- and resource-constrained environments such as emergency rescue, remote surveillance, and mobile edge computing. Through empirical validation, we demonstrate that GVC offers a viable path toward a new effective, efficient, scalable, and practical video communication paradigm.
Abstract:External memory is a key component of modern large language model (LLM) systems, enabling long-term interaction and personalization. Despite its importance, memory management is still largely driven by hand-designed heuristics, offering little insight into the long-term and uncertain consequences of memory decisions. In practice, choices about what to read or write shape future retrieval and downstream behavior in ways that are difficult to anticipate. We argue that memory management should be viewed as a sequential decision-making problem under uncertainty, where the utility of memory is delayed and dependent on future interactions. To this end, we propose DAM (Decision-theoretic Agent Memory), a decision-theoretic framework that decomposes memory management into immediate information access and hierarchical storage maintenance. Within this architecture, candidate operations are evaluated via value functions and uncertainty estimators, enabling an aggregate policy to arbitrate decisions based on estimated long-term utility and risk. Our contribution is not a new algorithm, but a principled reframing that clarifies the limitations of heuristic approaches and provides a foundation for future research on uncertainty-aware memory systems.




Abstract:Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
Abstract:Since LIC has made rapid progress recently compared to traditional methods, this paper attempts to discuss the question about 'Where is the boundary of Learned Image Compression(LIC)?' with regard to subjective matrics. Thus this paper splits the above problem into two sub-problems:1)Where is the boundary of rate-distortion performance of PSNR? 2)How to further improve the compression gain and achieve the boundary? Therefore this paper analyzes the effectiveness of scaling parameters for encoder, decoder and context model, which are the three components of LIC. Then we conclude that scaling for LIC is to scale for context model and decoder within LIC. Extensive experiments demonstrate that overfitting can actually serve as an effective context. By optimizing the context, this paper further improves PSNR and achieves state-of-the-art performance, showing a performance gain of 14.39% with BD-RATE over VVC.




Abstract:The burgeoning volume of digital content across diverse modalities necessitates efficient storage and retrieval methods. Conventional approaches struggle to cope with the escalating complexity and scale of multimedia data. In this paper, we proposed framework addresses this challenge by fusing AI-native multi-modal search capabilities with neural image compression. First we analyze the intricate relationship between compressibility and searchability, recognizing the pivotal role each plays in the efficiency of storage and retrieval systems. Through the usage of simple adapter is to bridge the feature of Learned Image Compression(LIC) and Contrastive Language-Image Pretraining(CLIP) while retaining semantic fidelity and retrieval of multi-modal data. Experimental evaluations on Kodak datasets demonstrate the efficacy of our approach, showcasing significant enhancements in compression efficiency and search accuracy compared to existing methodologies. Our work marks a significant advancement towards scalable and efficient multi-modal search systems in the era of big data.




Abstract:Prior research on deep video compression (DVC) for machine tasks typically necessitates training a unique codec for each specific task, mandating a dedicated decoder per task. In contrast, traditional video codecs employ a flexible encoder controller, enabling the adaptation of a single codec to different tasks through mechanisms like mode prediction. Drawing inspiration from this, we introduce an innovative encoder controller for deep video compression for machines. This controller features a mode prediction and a Group of Pictures (GoP) selection module. Our approach centralizes control at the encoding stage, allowing for adaptable encoder adjustments across different tasks, such as detection and tracking, while maintaining compatibility with a standard pre-trained DVC decoder. Empirical evidence demonstrates that our method is applicable across multiple tasks with various existing pre-trained DVCs. Moreover, extensive experiments demonstrate that our method outperforms previous DVC by about 25% bitrate for different tasks, with only one pre-trained decoder.




Abstract:Learned Image Compression (LIC) has achieved dramatic progress regarding objective and subjective metrics. MSE-based models aim to improve objective metrics while generative models are leveraged to improve visual quality measured by subjective metrics. However, they all suffer from blurring or deformation at low bit rates, especially at below $0.2bpp$. Besides, deformation on human faces and text is unacceptable for visual quality assessment, and the problem becomes more prominent on small faces and text. To solve this problem, we combine the advantage of MSE-based models and generative models by utilizing region of interest (ROI). We propose Hierarchical-ROI (H-ROI), to split images into several foreground regions and one background region to improve the reconstruction of regions containing faces, text, and complex textures. Further, we propose adaptive quantization by non-linear mapping within the channel dimension to constrain the bit rate while maintaining the visual quality. Exhaustive experiments demonstrate that our methods achieve better visual quality on small faces and text with lower bit rates, e.g., $0.7X$ bits of HiFiC and $0.5X$ bits of BPG.




Abstract:JPEG is still the most widely used image compression algorithm. Most image compression algorithms only consider uncompressed original image, while ignoring a large number of already existing JPEG images. Recently, JPEG recompression approaches have been proposed to further reduce the size of JPEG files. However, those methods only consider JPEG lossless recompression, which is just a special case of the rate-distortion theorem. In this paper, we propose a unified lossly and lossless JPEG recompression framework, which consists of learned quantization table and Markovian hierarchical variational autoencoders. Experiments show that our method can achieve arbitrarily low distortion when the bitrate is close to the upper bound, namely the bitrate of the lossless compression model. To the best of our knowledge, this is the first learned method that bridges the gap between lossy and lossless recompression of JPEG images.




Abstract:JPEG is one of the most popular image compression methods. It is beneficial to compress those existing JPEG files without introducing additional distortion. In this paper, we propose a deep learning based method to further compress JPEG images losslessly. Specifically, we propose a Multi-Level Parallel Conditional Modeling (ML-PCM) architecture, which enables parallel decoding in different granularities. First, luma and chroma are processed independently to allow parallel coding. Second, we propose pipeline parallel context model (PPCM) and compressed checkerboard context model (CCCM) for the effective conditional modeling and efficient decoding within luma and chroma components. Our method has much lower latency while achieves better compression ratio compared with previous SOTA. After proper software optimization, we can obtain a good throughput of 57 FPS for 1080P images on NVIDIA T4 GPU. Furthermore, combined with quantization, our approach can also act as a lossy JPEG codec which has obvious advantage over SOTA lossy compression methods in high bit rate (bpp$>0.9$).
Abstract:JPEG images can be further compressed to enhance the storage and transmission of large-scale image datasets. Existing learned lossless compressors for RGB images cannot be well transferred to JPEG images due to the distinguishing distribution of DCT coefficients and raw pixels. In this paper, we propose a novel framework for learned lossless compression of JPEG images that achieves end-to-end optimized prediction of the distribution of decoded DCT coefficients. To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy. An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients and independently compress the priors. We attempt to realize learned lossless compression of JPEG images in the frequency domain. Experimental results demonstrate that the proposed framework achieves superior or comparable performance in comparison to most recent lossless compressors with handcrafted context modeling for JPEG images.