Abstract:Human biological systems sustain life through extraordinary resilience, continually detecting damage, orchestrating targeted responses, and restoring function through self-healing. Inspired by these capabilities, this paper introduces ReCiSt, a bio-inspired agentic self-healing framework designed to achieve resilience in Distributed Computing Continuum Systems (DCCS). Modern DCCS integrate heterogeneous computing resources, ranging from resource-constrained IoT devices to high-performance cloud infrastructures, and their inherent complexity, mobility, and dynamic operating conditions expose them to frequent faults that disrupt service continuity. These challenges underscore the need for scalable, adaptive, and self-regulated resilience strategies. ReCiSt reconstructs the biological phases of Hemostasis, Inflammation, Proliferation, and Remodeling into the computational layers Containment, Diagnosis, Meta-Cognitive, and Knowledge for DCCS. These four layers perform autonomous fault isolation, causal diagnosis, adaptive recovery, and long-term knowledge consolidation through Language Model (LM)-powered agents. These agents interpret heterogeneous logs, infer root causes, refine reasoning pathways, and reconfigure resources with minimal human intervention. The proposed ReCiSt framework is evaluated on public fault datasets using multiple LMs, and no baseline comparison is included due to the scarcity of similar approaches. Nevertheless, our results, evaluated under different LMs, confirm ReCiSt's self-healing capabilities within tens of seconds with minimum of 10% of agent CPU usage. Our results also demonstrated depth of analysis to over come uncertainties and amount of micro-agents invoked to achieve resilience.
Abstract:Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This work-in-progress paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
Abstract:Federated Learning (FL) is a promising machine learning solution in large-scale IoT systems, guaranteeing load distribution and privacy. However, FL does not natively consider infrastructure efficiency, a critical concern for systems operating in resource-constrained environments. Several Reinforcement Learning (RL) based solutions offer improved client selection for FL; however, they do not consider infrastructure challenges, such as resource limitations and device churn. Furthermore, the training of RL methods is often not designed for practical application, as these approaches frequently do not consider generalizability and are not optimized for energy efficiency. To fill this gap, we propose BIPPO (Budget-aware Independent Proximal Policy Optimization), which is an energy-efficient multi-agent RL solution that improves performance. We evaluate BIPPO on two image classification tasks run in a highly budget-constrained setting, with FL clients training on non-IID data, a challenging context for vanilla FL. The improved sampler of BIPPO enables it to increase the mean accuracy compared to non-RL mechanisms, traditional PPO, and IPPO. In addition, BIPPO only consumes a negligible proportion of the budget, which stays consistent even if the number of clients increases. Overall, BIPPO delivers a performant, stable, scalable, and sustainable solution for client selection in IoT-FL.




Abstract:Edge devices have limited resources, which inevitably leads to situations where stream processing services cannot satisfy their needs. While existing autoscaling mechanisms focus entirely on resource scaling, Edge devices require alternative ways to sustain the Service Level Objectives (SLOs) of competing services. To address these issues, we introduce a Multi-dimensional Autoscaling Platform (MUDAP) that supports fine-grained vertical scaling across both service- and resource-level dimensions. MUDAP supports service-specific scaling tailored to available parameters, e.g., scale data quality or model size for a particular service. To optimize the execution across services, we present a scaling agent based on Regression Analysis of Structural Knowledge (RASK). The RASK agent efficiently explores the solution space and learns a continuous regression model of the processing environment for inferring optimal scaling actions. We compared our approach with two autoscalers, the Kubernetes VPA and a reinforcement learning agent, for scaling up to 9 services on a single Edge device. Our results showed that RASK can infer an accurate regression model in merely 20 iterations (i.e., observe 200s of processing). By increasingly adding elasticity dimensions, RASK sustained the highest request load with 28% less SLO violations, compared to baselines.
Abstract:The convergence of artificial intelligence and edge computing has spurred growing interest in enabling intelligent services directly on resource-constrained devices. While traditional deep learning models require significant computational resources and centralized data management, the resulting latency, bandwidth consumption, and privacy concerns have exposed critical limitations in cloud-centric paradigms. Brain-inspired computing, particularly Spiking Neural Networks (SNNs), offers a promising alternative by emulating biological neuronal dynamics to achieve low-power, event-driven computation. This survey provides a comprehensive overview of Edge Intelligence based on SNNs (EdgeSNNs), examining their potential to address the challenges of on-device learning, inference, and security in edge scenarios. We present a systematic taxonomy of EdgeSNN foundations, encompassing neuron models, learning algorithms, and supporting hardware platforms. Three representative practical considerations of EdgeSNN are discussed in depth: on-device inference using lightweight SNN models, resource-aware training and updating under non-stationary data conditions, and secure and privacy-preserving issues. Furthermore, we highlight the limitations of evaluating EdgeSNNs on conventional hardware and introduce a dual-track benchmarking strategy to support fair comparisons and hardware-aware optimization. Through this study, we aim to bridge the gap between brain-inspired learning and practical edge deployment, offering insights into current advancements, open challenges, and future research directions. To the best of our knowledge, this is the first dedicated and comprehensive survey on EdgeSNNs, providing an essential reference for researchers and practitioners working at the intersection of neuromorphic computing and edge intelligence.
Abstract:Edge computing breaks with traditional autoscaling due to strict resource constraints, thus, motivating more flexible scaling behaviors using multiple elasticity dimensions. This work introduces an agent-based autoscaling framework that dynamically adjusts both hardware resources and internal service configurations to maximize requirements fulfillment in constrained environments. We compare four types of scaling agents: Active Inference, Deep Q Network, Analysis of Structural Knowledge, and Deep Active Inference, using two real-world processing services running in parallel: YOLOv8 for visual recognition and OpenCV for QR code detection. Results show all agents achieve acceptable SLO performance with varying convergence patterns. While the Deep Q Network benefits from pre-training, the structural analysis converges quickly, and the deep active inference agent combines theoretical foundations with practical scalability advantages. Our findings provide evidence for the viability of multi-dimensional agent-based autoscaling for edge environments and encourage future work in this research direction.
Abstract:Large Language Models (LLMs) demonstrate strong potential across a variety of tasks in communications and networking due to their advanced reasoning capabilities. However, because different LLMs have different model structures and are trained using distinct corpora and methods, they may offer varying optimization strategies for the same network issues. Moreover, the limitations of an individual LLM's training data, aggravated by the potential maliciousness of its hosting device, can result in responses with low confidence or even bias. To address these challenges, we propose a blockchain-enabled collaborative framework that connects multiple LLMs into a Trustworthy Multi-LLM Network (MultiLLMN). This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems. Specifically, we begin by reviewing related work and highlighting the limitations of existing LLMs in collaboration and trust, emphasizing the need for trustworthiness in LLM-based systems. We then introduce the workflow and design of the proposed Trustworthy MultiLLMN framework. Given the severity of False Base Station (FBS) attacks in B5G and 6G communication systems and the difficulty of addressing such threats through traditional modeling techniques, we present FBS defense as a case study to empirically validate the effectiveness of our approach. Finally, we outline promising future research directions in this emerging area.
Abstract:Agentic AI, with its autonomous and proactive decision-making, has transformed smart environments. By integrating Generative AI (GenAI) and multi-agent systems, modern AI frameworks can dynamically adapt to user preferences, optimize data management, and improve resource allocation. This paper introduces UserCentrix, an agentic memory-augmented AI framework designed to enhance smart spaces through dynamic, context-aware decision-making. This framework integrates personalized Large Language Model (LLM) agents that leverage user preferences and LLM memory management to deliver proactive and adaptive assistance. Furthermore, it incorporates a hybrid hierarchical control system, balancing centralized and distributed processing to optimize real-time responsiveness while maintaining global situational awareness. UserCentrix achieves resource-efficient AI interactions by embedding memory-augmented reasoning, cooperative agent negotiation, and adaptive orchestration strategies. Our key contributions include (i) a self-organizing framework with proactive scaling based on task urgency, (ii) a Value of Information (VoI)-driven decision-making process, (iii) a meta-reasoning personal LLM agent, and (iv) an intelligent multi-agent coordination system for seamless environment adaptation. Experimental results across various models confirm the effectiveness of our approach in enhancing response accuracy, system efficiency, and computational resource management in real-world application.
Abstract:This work presents a comprehensive evaluation of neural network graph compilers across heterogeneous hardware platforms, addressing the critical gap between theoretical optimization techniques and practical deployment scenarios. We demonstrate how vendor-specific optimizations can invalidate relative performance comparisons between architectural archetypes, with performance advantages sometimes completely reversing after compilation. Our systematic analysis reveals that graph compilers exhibit performance patterns highly dependent on both neural architecture and batch sizes. Through fine-grained block-level experimentation, we establish that vendor-specific compilers can leverage repeated patterns in simple architectures, yielding disproportionate throughput gains as model depth increases. We introduce novel metrics to quantify a compiler's ability to mitigate performance friction as batch size increases. Our methodology bridges the gap between academic research and practical deployment by incorporating compiler effects throughout the research process, providing actionable insights for practitioners navigating complex optimization landscapes across heterogeneous hardware environments.
Abstract:Ensuring Service Level Objectives (SLOs) in large-scale architectures, such as Distributed Computing Continuum Systems (DCCS), is challenging due to their heterogeneous nature and varying service requirements across different devices and applications. Additionally, unpredictable workloads and resource limitations lead to fluctuating performance and violated SLOs. To improve SLO compliance in DCCS, one possibility is to apply machine learning; however, the design choices are often left to the developer. To that extent, we provide a benchmark of Active Inference -- an emerging method from neuroscience -- against three established reinforcement learning algorithms (Deep Q-Network, Advantage Actor-Critic, and Proximal Policy Optimization). We consider a realistic DCCS use case: an edge device running a video conferencing application alongside a WebSocket server streaming videos. Using one of the respective algorithms, we continuously monitor key performance metrics, such as latency and bandwidth usage, to dynamically adjust parameters -- including the number of streams, frame rate, and resolution -- to optimize service quality and user experience. To test algorithms' adaptability to constant system changes, we simulate dynamically changing SLOs and both instant and gradual data-shift scenarios, such as network bandwidth limitations and fluctuating device thermal states. Although the evaluated algorithms all showed advantages and limitations, our findings demonstrate that Active Inference is a promising approach for ensuring SLO compliance in DCCS, offering lower memory usage, stable CPU utilization, and fast convergence.