Abstract:Agentic AI, with its autonomous and proactive decision-making, has transformed smart environments. By integrating Generative AI (GenAI) and multi-agent systems, modern AI frameworks can dynamically adapt to user preferences, optimize data management, and improve resource allocation. This paper introduces UserCentrix, an agentic memory-augmented AI framework designed to enhance smart spaces through dynamic, context-aware decision-making. This framework integrates personalized Large Language Model (LLM) agents that leverage user preferences and LLM memory management to deliver proactive and adaptive assistance. Furthermore, it incorporates a hybrid hierarchical control system, balancing centralized and distributed processing to optimize real-time responsiveness while maintaining global situational awareness. UserCentrix achieves resource-efficient AI interactions by embedding memory-augmented reasoning, cooperative agent negotiation, and adaptive orchestration strategies. Our key contributions include (i) a self-organizing framework with proactive scaling based on task urgency, (ii) a Value of Information (VoI)-driven decision-making process, (iii) a meta-reasoning personal LLM agent, and (iv) an intelligent multi-agent coordination system for seamless environment adaptation. Experimental results across various models confirm the effectiveness of our approach in enhancing response accuracy, system efficiency, and computational resource management in real-world application.
Abstract:This article introduces Follow-Me AI, a concept designed to enhance user interactions with smart environments, optimize energy use, and provide better control over data captured by these environments. Through AI agents that accompany users, Follow-Me AI negotiates data management based on user consent, aligns environmental controls as well as user communication and computes resources available in the environment with user preferences, and predicts user behavior to proactively adjust the smart environment. The manuscript illustrates this concept with a detailed example of Follow-Me AI in a smart campus setting, detailing the interactions with the building's management system for optimal comfort and efficiency. Finally, this article looks into the challenges and opportunities related to Follow-Me AI.
Abstract:In today's digital world, Generative Artificial Intelligence (GenAI) such as Large Language Models (LLMs) is becoming increasingly prevalent, extending its reach across diverse applications. This surge in adoption has sparked a significant increase in demand for data-centric GenAI models, highlighting the necessity for robust data communication infrastructures. Central to this need are message brokers, which serve as essential channels for data transfer within various system components. This survey aims to delve into a comprehensive analysis of traditional and modern message brokers, offering a comparative study of prevalent platforms. Our study considers numerous criteria including, but not limited to, open-source availability, integrated monitoring tools, message prioritization mechanisms, capabilities for parallel processing, reliability, distribution and clustering functionalities, authentication processes, data persistence strategies, fault tolerance, and scalability. Furthermore, we explore the intrinsic constraints that the design and operation of each message broker might impose, recognizing that these limitations are crucial in understanding their real-world applicability. We then leverage these insights to propose a sophisticated message broker framework -- one designed with the adaptability and robustness necessary to meet the evolving requisites of GenAI applications. Finally, this study examines the enhancement of message broker mechanisms specifically for GenAI contexts, emphasizing the criticality of developing a versatile message broker framework. Such a framework would be poised for quick adaptation, catering to the dynamic and growing demands of GenAI in the foreseeable future. Through this dual-pronged approach, we intend to contribute a foundational compendium that can guide future innovations and infrastructural advancements in the realm of GenAI data communication.