ETH Zurich
Abstract:Much theoretical work has described the ability of transformers to represent formal languages. However, linking theoretical results to empirical performance is not straightforward due to the complex interplay between the architecture, the learning algorithm, and training data. To test whether theoretical lower bounds imply \emph{learnability} of formal languages, we turn to recent work relating transformers to $n$-gram language models (LMs). We study transformers' ability to learn random $n$-gram LMs of two kinds: ones with arbitrary next-symbol probabilities and ones where those are defined with shared parameters. We find that classic estimation techniques for $n$-gram LMs such as add-$\lambda$ smoothing outperform transformers on the former, while transformers perform better on the latter, outperforming methods specifically designed to learn $n$-gram LMs.
Abstract:We introduce a generalization of classic information-theoretic measures of predictive uncertainty in online language processing, based on the simulation of expected continuations of incremental linguistic contexts. Our framework provides a formal definition of anticipatory and responsive measures, and it equips experimenters with the tools to define new, more expressive measures beyond standard next-symbol entropy and surprisal. While extracting these standard quantities from language models is convenient, we demonstrate that using Monte Carlo simulation to estimate alternative responsive and anticipatory measures pays off empirically: New special cases of our generalized formula exhibit enhanced predictive power compared to surprisal for human cloze completion probability as well as ELAN, LAN, and N400 amplitudes, and greater complementarity with surprisal in predicting reading times.
Abstract:We present a new perspective on how readers integrate context during real-time language comprehension. Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit (e.g., a word) is an affine function of its in-context information content. We first observe that surprisal is only one out of many potential ways that a contextual predictor can be derived from a language model. Another one is the pointwise mutual information (PMI) between a unit and its context, which turns out to yield the same predictive power as surprisal when controlling for unigram frequency. Moreover, both PMI and surprisal are correlated with frequency. This means that neither PMI nor surprisal contains information about context alone. In response to this, we propose a technique where we project surprisal onto the orthogonal complement of frequency, yielding a new contextual predictor that is uncorrelated with frequency. Our experiments show that the proportion of variance in reading times explained by context is a lot smaller when context is represented by the orthogonalized predictor. From an interpretability standpoint, this indicates that previous studies may have overstated the role that context has in predicting reading times.
Abstract:Humans appear to have a critical period (CP) for language acquisition: Second language (L2) acquisition becomes harder after early childhood, and ceasing exposure to a first language (L1) after this period (but not before) typically does not lead to substantial loss of L1 proficiency. It is unknown whether these CP effects result from innately determined brain maturation or as a stabilization of neural connections naturally induced by experience. In this study, we use language models (LMs) to test the extent to which these phenomena are peculiar to humans, or shared by a broader class of language learners. We vary the age of exposure by training LMs on language pairs in various experimental conditions, and find that LMs, which lack any direct analog to innate maturational stages, do not show CP effects when trained sequentially on L1 and L2. Our results contradict the claim that CP effects are an inevitable result of learning in statistical learners, and they are consistent with an innate mechanism for CP effects. We show that we can reverse-engineer the CP by introducing a regularizer partway through training to simulate a maturational decrease in plasticity. All in all, our results suggest that L1 learning on its own may not be enough to induce a CP, and additional engineering is necessary to make language models more cognitively plausible.
Abstract:Tokenization - the practice of converting strings of characters over an alphabet into sequences of tokens over a vocabulary - is a critical yet under-theorized step in the NLP pipeline. Notably, it remains the only major step not fully integrated into widely used end-to-end neural models. This paper aims to address this theoretical gap by laying the foundations of tokenization from a formal perspective. By articulating and extending basic properties about the category of stochastic maps, we propose a unified framework for representing and analyzing tokenizer models. This framework allows us to establish general conditions for the use of tokenizers. In particular, we formally establish the necessary and sufficient conditions for a tokenizer model to preserve the consistency of statistical estimators. Additionally, we discuss statistical and computational concerns crucial for the design and implementation of tokenizer models. The framework and results advanced in this paper represent a step toward a robust theoretical foundation for neural language modeling.
Abstract:Best-of-N (BoN) is a popular and effective algorithm for aligning language models to human preferences. The algorithm works as follows: at inference time, N samples are drawn from the language model, and the sample with the highest reward, as judged by a reward model, is returned as the output. Despite its effectiveness, BoN is computationally expensive; it reduces sampling throughput by a factor of N. To make BoN more efficient at inference time, one strategy is to fine-tune the language model to mimic what BoN does during inference. To achieve this, we derive the distribution induced by the BoN algorithm. We then propose to fine-tune the language model to minimize backward KL divergence to the BoN distribution. Our approach is analogous to mean-field variational inference and, thus, we term it variational BoN (vBoN). To the extent this fine-tuning is successful and we end up with a good approximation, we have reduced the inference cost by a factor of N. Our experiments on a controlled generation task suggest that while variational BoN is not as effective as BoN in aligning language models, it is close to BoN performance as vBoN appears more often on the Pareto frontier of reward and KL divergence compared to models trained with KL-constrained RL objective.
Abstract:The performance of modern language models (LMs) has been improved by chain-of-thought (CoT) reasoning, i.e., the process of generating intermediate results that guide the model towards a final answer. A possible explanation for this improvement is that CoT reasoning extends an LM's computational power, as RNNs and transformers with additional scratch space are known to be Turing complete. Comparing LMs to Turing machines, however, introduces a category error - Turing machines decide language membership, whereas LMs define distributions over strings. To bridge this gap, we formalize CoT reasoning in a probabilistic setting. We present several results on the representational capacity of recurrent and transformer LMs with CoT reasoning, showing that they can represent the same family of distributions over strings as probabilistic Turing machines.
Abstract:The relationship between the quality of a string and its probability $p(\boldsymbol{y})$ under a language model has been influential in the development of techniques to build good text generation systems. For example, several decoding algorithms have been motivated to manipulate $p(\boldsymbol{y})$ to produce higher-quality text. In this work, we examine the probability--quality relationship in language models explicitly aligned to human preferences, e.g., through Reinforcement Learning through Human Feedback (RLHF). We find that, given a general language model and its aligned version, for corpora sampled from an aligned language model, there exists a trade-off between the average reward and average log-likelihood of the strings under the general language model. We provide a formal treatment of this issue and demonstrate how a choice of sampling adaptor allows for a selection of how much likelihood we exchange for the reward.
Abstract:What can large language models learn? By definition, language models (LM) are distributions over strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf-learning probabilistic languages-rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
Abstract:It has been claimed that within a language, morphologically irregular words are more likely to be phonotactically simple and morphologically regular words are more likely to be phonotactically complex. This inverse correlation has been demonstrated in English for a small sample of words, but has yet to be shown for a larger sample of languages. Furthermore, frequency and word length are known to influence both phonotactic complexity and morphological irregularity, and they may be confounding factors in this relationship. Therefore, we examine the relationships between all pairs of these four variables both to assess the robustness of previous findings using improved methodology and as a step towards understanding the underlying causal relationship. Using information-theoretic measures of phonotactic complexity and morphological irregularity (Pimentel et al., 2020; Wu et al., 2019) on 25 languages from UniMorph, we find that there is evidence of a positive relationship between morphological irregularity and phonotactic complexity within languages on average, although the direction varies within individual languages. We also find weak evidence of a negative relationship between word length and morphological irregularity that had not been previously identified, and that some existing findings about the relationships between these four variables are not as robust as previously thought.