Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Mario Giulianelli, Luca Malagutti, Juan Luis Gastaldi, Brian DuSell, Tim Vieira, Ryan Cotterell

Abstract:Language models are widely used in computational psycholinguistics to test theories that relate the negative log probability (the surprisal) of a region of interest (a substring of characters) under a language model to its cognitive cost experienced by readers, as operationalized, for example, by gaze duration on the region. However, the application of modern language models to psycholinguistic studies is complicated by the practice of using tokenization as an intermediate step in training a model. Doing so results in a language model over token strings rather than one over character strings. Vexingly, regions of interest are generally misaligned with these token strings. The paper argues that token-level language models should be (approximately) marginalized into character-level language models before they are used in psycholinguistic studies to compute the surprisal of a region of interest; then, the marginalized character-level language model can be used to compute the surprisal of an arbitrary character substring, which we term a focal area, that the experimenter may wish to use as a predictor. Our proposal of marginalizing a token-level model into a character-level one solves this misalignment issue independently of the tokenization scheme. Empirically, we discover various focal areas whose surprisal is a better psychometric predictor than the surprisal of the region of interest itself.

Via

Abstract:Tokenization - the practice of converting strings of characters over an alphabet into sequences of tokens over a vocabulary - is a critical yet under-theorized step in the NLP pipeline. Notably, it remains the only major step not fully integrated into widely used end-to-end neural models. This paper aims to address this theoretical gap by laying the foundations of tokenization from a formal perspective. By articulating and extending basic properties about the category of stochastic maps, we propose a unified framework for representing and analyzing tokenizer models. This framework allows us to establish general conditions for the use of tokenizers. In particular, we formally establish the necessary and sufficient conditions for a tokenizer model to preserve the consistency of statistical estimators. Additionally, we discuss statistical and computational concerns crucial for the design and implementation of tokenizer models. The framework and results advanced in this paper represent a step toward a robust theoretical foundation for neural language modeling.

Via

Abstract:Best-of-N (BoN) is a popular and effective algorithm for aligning language models to human preferences. The algorithm works as follows: at inference time, N samples are drawn from the language model, and the sample with the highest reward, as judged by a reward model, is returned as the output. Despite its effectiveness, BoN is computationally expensive; it reduces sampling throughput by a factor of N. To make BoN more efficient at inference time, one strategy is to fine-tune the language model to mimic what BoN does during inference. To achieve this, we derive the distribution induced by the BoN algorithm. We then propose to fine-tune the language model to minimize backward KL divergence to the BoN distribution. Our approach is analogous to mean-field variational inference and, thus, we term it variational BoN (vBoN). To the extent this fine-tuning is successful and we end up with a good approximation, we have reduced the inference cost by a factor of N. Our experiments on a controlled generation task suggest that while variational BoN is not as effective as BoN in aligning language models, it is close to BoN performance as vBoN appears more often on the Pareto frontier of reward and KL divergence compared to models trained with KL-constrained RL objective.

Via

Figures and Tables:

Abstract:Direct preference optimization (DPO) is a successful fine-tuning strategy for aligning large language models with human preferences without the need to train a reward model or employ reinforcement learning. DPO, as originally formulated, relies on binary preference data and fine-tunes a language model to increase the likelihood of a preferred response over a dispreferred response. However, not all preference pairs are equal: while in some cases the preferred response is only slightly better than the dispreferred response, there can be a stronger preference for one response when, for example, the other response includes harmful or toxic content. In this paper, we propose a generalization of DPO, termed DPO with an offset (ODPO), that does not treat every preference pair equally during fine-tuning. Intuitively, ODPO requires the difference between the likelihood of the preferred and dispreferred response to be greater than an offset value. The offset is determined based on the extent to which one response is preferred over another. Our experiments on various tasks suggest that ODPO significantly outperforms DPO in aligning language models, especially when the number of preference pairs is limited.

Via

Abstract:The left-corner transformation (Rosenkrantz and Lewis, 1970) is used to remove left recursion from context-free grammars, which is an important step towards making the grammar parsable top-down with simple techniques. This paper generalizes prior left-corner transformations to support semiring-weighted production rules and to provide finer-grained control over which left corners may be moved. Our generalized left-corner transformation (GLCT) arose from unifying the left-corner transformation and speculation transformation (Eisner and Blatz, 2007), originally for logic programming. Our new transformation and speculation define equivalent weighted languages. Yet, their derivation trees are structurally different in an important way: GLCT replaces left recursion with right recursion, and speculation does not. We also provide several technical results regarding the formal relationships between the outputs of GLCT, speculation, and the original grammar. Lastly, we empirically investigate the efficiency of GLCT for left-recursion elimination from grammars of nine languages.

Via

Abstract:The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of $\mathcal{O}(n|\mathcal{N}|)$ (where $n$ is the string length and $|\mathcal{N}|$ is the size of the nonterminal set) and more space-efficient by a factor of $\mathcal{O}(|\Gamma|)$ (where $|\Gamma|$ is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of $\mathcal{O}(|\Gamma|^2)$ and $\mathcal{O}(|\Gamma|^3)$, respectively. Finally, we give the first PAA stringsum and allsum algorithms.

Via

Abstract:This paper provides a reference description, in the form of a deduction system, of Earley's (1970) context-free parsing algorithm with various speed-ups. Our presentation includes a known worst-case runtime improvement from Earley's $O (N^3|G||R|)$, which is unworkable for the large grammars that arise in natural language processing, to $O (N^3|G|)$, which matches the runtime of CKY on a binarized version of the grammar $G$. Here $N$ is the length of the sentence, $|R|$ is the number of productions in $G$, and $|G|$ is the total length of those productions. We also provide a version that achieves runtime of $O (N^3|M|)$ with $|M| \leq |G|$ when the grammar is represented compactly as a single finite-state automaton $M$ (this is partly novel). We carefully treat the generalization to semiring-weighted deduction, preprocessing the grammar like Stolcke (1995) to eliminate deduction cycles, and further generalize Stolcke's method to compute the weights of sentence prefixes. We also provide implementation details for efficient execution, ensuring that on a preprocessed grammar, the semiring-weighted versions of our methods have the same asymptotic runtime and space requirements as the unweighted methods, including sub-cubic runtime on some grammars.

Via

Authors:Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, Ryan Cotterell

Abstract:Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a $\frac{1}{{\sigma(\boldsymbol{\mu}^\star)}}(1-e^{-{\sigma(\boldsymbol{\mu}^\star)}})$-approximation of an optimal merge sequence, where ${\sigma(\boldsymbol{\mu}^\star)}$ is the total backward curvature with respect to the optimal merge sequence $\boldsymbol{\mu}^\star$. Empirically the lower bound of the approximation is $\approx 0.37$. We provide a faster implementation of BPE which improves the runtime complexity from $\mathcal{O}\left(N M\right)$ to $\mathcal{O}\left(N \log M\right)$, where $N$ is the sequence length and $M$ is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.

Via

Abstract:Weighted finite-state automata (WSFAs) are commonly used in NLP. Failure transitions are a useful extension for compactly representing backoffs or interpolation in $n$-gram models and CRFs, which are special cases of WFSAs. The pathsum in ordinary acyclic WFSAs is efficiently computed by the backward algorithm in time $O(|E|)$, where $E$ is the set of transitions. However, this does not allow failure transitions, and preprocessing the WFSA to eliminate failure transitions could greatly increase $|E|$. We extend the backward algorithm to handle failure transitions directly. Our approach is efficient when the average state has outgoing arcs for only a small fraction $s \ll 1$ of the alphabet $\Sigma$. We propose an algorithm for general acyclic WFSAs which runs in $O{\left(|E| + s |\Sigma| |Q| T_\text{max} \log{|\Sigma|}\right)}$, where $Q$ is the set of states and $T_\text{max}$ is the size of the largest connected component of failure transitions. When the failure transition topology satisfies a condition exemplified by CRFs, the $T_\text{max}$ factor can be dropped, and when the weight semiring is a ring, the $\log{|\Sigma|}$ factor can be dropped. In the latter case (ring-weighted acyclic WFSAs), we also give an alternative algorithm with complexity $\displaystyle O{\left(|E| + |\Sigma| |Q| \min(1,s\pi_\text{max}) \right)}$, where $\pi_\text{max}$ is the size of the longest failure path.

Via

Figures and Tables:

Abstract:Weighted pushdown automata (WPDAs) are at the core of many natural language processing tasks, like syntax-based statistical machine translation and transition-based dependency parsing. As most existing dynamic programming algorithms are designed for context-free grammars (CFGs), algorithms for PDAs often resort to a PDA-to-CFG conversion. In this paper, we develop novel algorithms that operate directly on WPDAs. Our algorithms are inspired by Lang's algorithm, but use a more general definition of pushdown automaton and either reduce the space requirements by a factor of $|\Gamma|$ (the size of the stack alphabet) or reduce the runtime by a factor of more than $|Q|$ (the number of states). When run on the same class of PDAs as Lang's algorithm, our algorithm is both more space-efficient by a factor of $|\Gamma|$ and more time-efficient by a factor of $|Q| \cdot |\Gamma|$.

Via