Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Niklas Stoehr, Pengxiang Cheng, Jing Wang, Daniel Preotiuc-Pietro, Rajarshi Bhowmik

Language models contain ranking-based knowledge and are powerful solvers of in-context ranking tasks. For instance, they may have parametric knowledge about the ordering of countries by size or may be able to rank reviews by sentiment. Recent work focuses on pairwise, pointwise, and listwise prompting techniques to elicit a language model's ranking knowledge. However, we find that even with careful calibration and constrained decoding, prompting-based techniques may not always be self-consistent in the rankings they produce. This motivates us to explore an alternative approach that is inspired by an unsupervised probing method called Contrast-Consistent Search (CCS). The idea is to train a probing model guided by a logical constraint: a model's representation of a statement and its negation must be mapped to contrastive true-false poles consistently across multiple statements. We hypothesize that similar constraints apply to ranking tasks where all items are related via consistent pairwise or listwise comparisons. To this end, we extend the binary CCS method to Contrast-Consistent Ranking (CCR) by adapting existing ranking methods such as the Max-Margin Loss, Triplet Loss, and Ordinal Regression objective. Our results confirm that, for the same language model, CCR probing outperforms prompting and even performs on a par with prompting much larger language models.

Via

Giuseppe Russo, Niklas Stoehr, Manoel Horta Ribeiro

Conspiracy Theory Identication task is a new shared task proposed for the first time at the Evalita 2023. The ACTI challenge, based exclusively on comments published on conspiratorial channels of telegram, is divided into two subtasks: (i) Conspiratorial Content Classification: identifying conspiratorial content and (ii) Conspiratorial Category Classification about specific conspiracy theory classification. A total of fifteen teams participated in the task for a total of 81 submissions. We illustrate the best performing approaches were based on the utilization of large language models. We finally draw conclusions about the utilization of these models for counteracting the spreading of misinformation in online platforms.

Via

Kevin Du, Lucas Torroba Hennigen, Niklas Stoehr, Alexander Warstadt, Ryan Cotterell

Many popular feature-attribution methods for interpreting deep neural networks rely on computing the gradients of a model's output with respect to its inputs. While these methods can indicate which input features may be important for the model's prediction, they reveal little about the inner workings of the model itself. In this paper, we observe that the gradient computation of a model is a special case of a more general formulation using semirings. This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics about the gradient graph of a neural network, such as the highest-weighted path and entropy. We implement this generalized algorithm, evaluate it on synthetic datasets to better understand the statistics it computes, and apply it to study BERT's behavior on the subject-verb number agreement task (SVA). With this method, we (a) validate that the amount of gradient flow through a component of a model reflects its importance to a prediction and (b) for SVA, identify which pathways of the self-attention mechanism are most important.

Via

Andreas Opedal, Niklas Stoehr, Abulhair Saparov, Mrinmaya Sachan

Solving math story problems is a complex task for students and NLP models alike, requiring them to understand the world as described in the story and reason over it to compute an answer. Recent years have seen impressive performance on automatically solving these problems with large pre-trained language models and innovative techniques to prompt them. However, it remains unclear if these models possess accurate representations of mathematical concepts. This leads to lack of interpretability and trustworthiness which impedes their usefulness in various applications. In this paper, we consolidate previous work on categorizing and representing math story problems and develop MathWorld, which is a graph-based semantic formalism specific for the domain of math story problems. With MathWorld, we can assign world models to math story problems which represent the situations and actions introduced in the text and their mathematical relationships. We combine math story problems from several existing datasets and annotate a corpus of 1,019 problems and 3,204 logical forms with MathWorld. Using this data, we demonstrate the following use cases of MathWorld: (1) prompting language models with synthetically generated question-answer pairs to probe their reasoning and world modeling abilities, and (2) generating new problems by using the world models as a design space.

Via

Mian Zhong, Shehzaad Dhuliawala, Niklas Stoehr

Decision-makers in the humanitarian sector rely on timely and exact information during crisis events. Knowing how many civilians were injured during an earthquake is vital to allocate aids properly. Information about such victim counts is often only available within full-text event descriptions from newspapers and other reports. Extracting numbers from text is challenging: numbers have different formats and may require numeric reasoning. This renders purely string matching-based approaches insufficient. As a consequence, fine-grained counts of injured, displaced, or abused victims beyond fatalities are often not extracted and remain unseen. We cast victim count extraction as a question answering (QA) task with a regression or classification objective. We compare regex, dependency parsing, semantic role labeling-based approaches, and advanced text-to-text models. Beyond model accuracy, we analyze extraction reliability and robustness which are key for this sensitive task. In particular, we discuss model calibration and investigate few-shot and out-of-distribution performance. Ultimately, we make a comprehensive recommendation on which model to select for different desiderata and data domains. Our work is among the first to apply numeracy-focused large language models in a real-world use case with a positive impact.

Via

Niklas Stoehr, Benjamin J. Radford, Ryan Cotterell, Aaron Schein

Many dynamical systems exhibit latent states with intrinsic orderings such as "ally", "neutral" and "enemy" relationships in international relations. Such latent states are evidenced through entities' cooperative versus conflictual interactions which are similarly ordered. Models of such systems often involve state-to-action emission and state-to-state transition matrices. It is common practice to assume that the rows of these stochastic matrices are independently sampled from a Dirichlet distribution. However, this assumption discards ordinal information and treats states and actions falsely as order-invariant categoricals, which hinders interpretation and evaluation. To address this problem, we propose the Ordered Matrix Dirichlet (OMD): rows are sampled conditionally dependent such that probability mass is shifted to the right of the matrix as we move down rows. This results in a well-ordered mapping between latent states and observed action types. We evaluate the OMD in two settings: a Hidden Markov Model and a novel Bayesian Dynamic Poisson Tucker Model tailored to political event data. Models built on the OMD recover interpretable latent states and show superior forecasting performance in few-shot settings. We detail the wide applicability of the OMD to other domains where models with Dirichlet-sampled matrices are popular (e.g. topic modeling) and publish user-friendly code.

Via

Ali Hürriyetoğlu, Osman Mutlu, Fırat Duruşan, Onur Uca, Alaeddin Selçuk Gürel, Benjamin Radford, Yaoyao Dai, Hansi Hettiarachchi, Niklas Stoehr, Tadashi Nomoto, Milena Slavcheva, Francielle Vargas, Aaqib Javid, Fatih Beyhan, Erdem Yörük

We report results of the CASE 2022 Shared Task 1 on Multilingual Protest Event Detection. This task is a continuation of CASE 2021 that consists of four subtasks that are i) document classification, ii) sentence classification, iii) event sentence coreference identification, and iv) event extraction. The CASE 2022 extension consists of expanding the test data with more data in previously available languages, namely, English, Hindi, Portuguese, and Spanish, and adding new test data in Mandarin, Turkish, and Urdu for Sub-task 1, document classification. The training data from CASE 2021 in English, Portuguese and Spanish were utilized. Therefore, predicting document labels in Hindi, Mandarin, Turkish, and Urdu occurs in a zero-shot setting. The CASE 2022 workshop accepts reports on systems developed for predicting test data of CASE 2021 as well. We observe that the best systems submitted by CASE 2022 participants achieve between 79.71 and 84.06 F1-macro for new languages in a zero-shot setting. The winning approaches are mainly ensembling models and merging data in multiple languages. The best two submissions on CASE 2021 data outperform submissions from last year for Subtask 1 and Subtask 2 in all languages. Only the following scenarios were not outperformed by new submissions on CASE 2021: Subtask 3 Portuguese \& Subtask 4 English.

Via

Tiago Pimentel, Josef Valvoda, Niklas Stoehr, Ryan Cotterell

In this paper, we seek to measure how much information a component in a neural network could extract from the representations fed into it. Our work stands in contrast to prior probing work, most of which investigates how much information a model's representations contain. This shift in perspective leads us to propose a new principle for probing, the architectural bottleneck principle: In order to estimate how much information a given component could extract, a probe should look exactly like the component. Relying on this principle, we estimate how much syntactic information is available to transformers through our attentional probe, a probe that exactly resembles a transformer's self-attention head. Experimentally, we find that, in three models (BERT, ALBERT, and RoBERTa), a sentence's syntax tree is mostly extractable by our probe, suggesting these models have access to syntactic information while composing their contextual representations. Whether this information is actually used by these models, however, remains an open question.

Via

Clément Lefebvre, Niklas Stoehr

For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as "Military injured two civilians'' by a template, e.g. "People were [Z]" and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select answer candidates Z* = {"injured'', "hurt"...} by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our interactive codebook design tool. We evaluate PR-ENT in several robustness checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.

Via

Niklas Stoehr, Lucas Torroba Hennigen, Josef Valvoda, Robert West, Ryan Cotterell, Aaron Schein

For the quantitative monitoring of international relations, political events are extracted from the news and parsed into "who-did-what-to-whom" patterns. This has resulted in large data collections which require aggregate statistics for analysis. The Goldstein Scale is an expert-based measure that ranks individual events on a one-dimensional scale from conflictual to cooperative. However, the scale disregards fatality counts as well as perpetrator and victim types involved in an event. This information is typically considered in qualitative conflict assessment. To address this limitation, we propose a probabilistic generative model over the full subject-predicate-quantifier-object tuples associated with an event. We treat conflict intensity as an interpretable, ordinal latent variable that correlates conflictual event types with high fatality counts. Taking a Bayesian approach, we learn a conflict intensity scale from data and find the optimal number of intensity classes. We evaluate the model by imputing missing data. Our scale proves to be more informative than the original Goldstein Scale in autoregressive forecasting and when compared with global online attention towards armed conflicts.

Via