Alert button
Picture for Rongzhao Wang

Rongzhao Wang

Alert button

Training A Multi-stage Deep Classifier with Feedback Signals

Nov 12, 2023
Chao Xu, Yu Yang, Rongzhao Wang, Guan Wang, Bojia Lin

Multi-Stage Classifier (MSC) - several classifiers working sequentially in an arranged order and classification decision is partially made at each step - is widely used in industrial applications for various resource limitation reasons. The classifiers of a multi-stage process are usually Neural Network (NN) models trained independently or in their inference order without considering the signals from the latter stages. Aimed at two-stage binary classification process, the most common type of MSC, we propose a novel training framework, named Feedback Training. The classifiers are trained in an order reverse to their actual working order, and the classifier at the later stage is used to guide the training of initial-stage classifier via a sample weighting method. We experimentally show the efficacy of our proposed approach, and its great superiority under the scenario of few-shot training.

Viaarxiv icon

CLUE: A Chinese Language Understanding Evaluation Benchmark

Apr 14, 2020
Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li, Kai Sun, Yechen Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian, Dian Yu, Bo Shi, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Zhenzhong Lan

Figure 1 for CLUE: A Chinese Language Understanding Evaluation Benchmark
Figure 2 for CLUE: A Chinese Language Understanding Evaluation Benchmark
Figure 3 for CLUE: A Chinese Language Understanding Evaluation Benchmark
Figure 4 for CLUE: A Chinese Language Understanding Evaluation Benchmark

We introduce CLUE, a Chinese Language Understanding Evaluation benchmark. It contains eight different tasks, including single-sentence classification, sentence pair classification, and machine reading comprehension. We evaluate CLUE on a number of existing full-network pre-trained models for Chinese. We also include a small hand-crafted diagnostic test set designed to probe specific linguistic phenomena using different models, some of which are unique to Chinese. Along with CLUE, we release a large clean crawled raw text corpus that can be used for model pre-training. We release CLUE, baselines and pre-training dataset on Github.

* 9 pages, 4 figures 
Viaarxiv icon