Neural 'dense' retrieval models are state of the art for many datasets, however these models often exhibit limited domain transfer ability. Existing approaches to adaptation are unwieldy, such as requiring explicit supervision, complex model architectures, or massive external models. We present $\texttt{ABEL}$, a simple but effective unsupervised method to enhance passage retrieval in zero-shot settings. Our technique follows a straightforward loop: a dense retriever learns from supervision signals provided by a reranker, and subsequently, the reranker is updated based on feedback from the improved retriever. By iterating this loop, the two components mutually enhance one another's performance. Experimental results demonstrate that our unsupervised $\texttt{ABEL}$ model outperforms both leading supervised and unsupervised retrievers on the BEIR benchmark. Meanwhile, it exhibits strong adaptation abilities to tasks and domains that were unseen during training. By either fine-tuning $\texttt{ABEL}$ on labelled data or integrating it with existing supervised dense retrievers, we achieve state-of-the-art results.\footnote{Source code is available at \url{https://github.com/Fantabulous-J/BootSwitch}.}
The burgeoning progress in the field of Large Language Models (LLMs) heralds significant benefits due to their unparalleled capacities. However, it is critical to acknowledge the potential misuse of these models, which could give rise to a spectrum of social and ethical dilemmas. Despite numerous preceding efforts centered around distinguishing synthetic text, most existing detection systems fail to identify data synthesized by the latest LLMs, such as ChatGPT and GPT-4. In response to this challenge, we introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields. Moreover, our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies. It also possesses the capability to identify text generated utilizing a potent detection-evasion technique. Our comprehensive research underlines our commitment to boosting the robustness and efficiency of machine-generated text detection mechanisms, particularly in the context of swiftly progressing and increasingly adaptive AI technologies.
Modern NLP models are often trained over large untrusted datasets, raising the potential for a malicious adversary to compromise model behaviour. For instance, backdoors can be implanted through crafting training instances with a specific textual trigger and a target label. This paper posits that backdoor poisoning attacks exhibit spurious correlation between simple text features and classification labels, and accordingly, proposes methods for mitigating spurious correlation as means of defence. Our empirical study reveals that the malicious triggers are highly correlated to their target labels; therefore such correlations are extremely distinguishable compared to those scores of benign features, and can be used to filter out potentially problematic instances. Compared with several existing defences, our defence method significantly reduces attack success rates across backdoor attacks, and in the case of insertion based attacks, our method provides a near-perfect defence.
Large-scale language models have achieved tremendous success across various natural language processing (NLP) applications. Nevertheless, language models are vulnerable to backdoor attacks, which inject stealthy triggers into models for steering them to undesirable behaviors. Most existing backdoor attacks, such as data poisoning, require further (re)training or fine-tuning language models to learn the intended backdoor patterns. The additional training process however diminishes the stealthiness of the attacks, as training a language model usually requires long optimization time, a massive amount of data, and considerable modifications to the model parameters. In this work, we propose Training-Free Lexical Backdoor Attack (TFLexAttack) as the first training-free backdoor attack on language models. Our attack is achieved by injecting lexical triggers into the tokenizer of a language model via manipulating its embedding dictionary using carefully designed rules. These rules are explainable to human developers which inspires attacks from a wider range of hackers. The sparse manipulation of the dictionary also habilitates the stealthiness of our attack. We conduct extensive experiments on three dominant NLP tasks based on nine language models to demonstrate the effectiveness and universality of our attack. The code of this work is available at https://github.com/Jinxhy/TFLexAttack.
A parallel corpus is generally required to automatically evaluate the translation quality using the metrics, such as BLEU, METEOR and BERTScore. While the reference-based evaluation paradigm is widely used in many machine translation tasks, it is difficult to be applied to translation with low-resource languages, as those languages suffer from a deficiency of corpora. Round-trip translation provides an encouraging way to alleviate the urgent requirement of the parallel corpus, although it was unfortunately not observed to correlate with forwarding translation in the era of statistical machine translation. In this paper, we firstly observe that forward translation quality consistently correlates to corresponding round-trip translation quality in the scope of neural machine translation. Then, we carefully analyse and unveil the reason for the contradictory results on statistical machine translation systems. Secondly, we propose a simple yet effective regression method to predict the performance of forward translation scores based on round-trip translation scores for various language pairs, including those between very low-resource languages. We conduct extensive experiments to show the effectiveness and robustness of the predictive models on 1,000+ language pairs. Finally, we test our method on challenging settings, such as predicting scores: i) for unseen language pairs in training and ii) on real-world WMT shared tasks but in new domains. The extensive experiments demonstrate the robustness and utility of our approach. We believe our work will inspire works on very low-resource multilingual machine translation.
In this paper, we propose a variational autoencoder with disentanglement priors, VAE-DPRIOR, for conditional natural language generation with none or a handful of task-specific labeled examples. In order to improve compositional generalization, our model performs disentangled representation learning by introducing a prior for the latent content space and another prior for the latent label space. We show both empirically and theoretically that the conditional priors can already disentangle representations even without specific regularizations as in the prior work. We can also sample diverse content representations from the content space without accessing data of the seen tasks, and fuse them with the representations of novel tasks for generating diverse texts in the low-resource settings. Our extensive experiments demonstrate the superior performance of our model over competitive baselines in terms of i) data augmentation in continuous zero/few-shot learning, and ii) text style transfer in both zero/few-shot settings.
Nowadays, due to the breakthrough in natural language generation (NLG), including machine translation, document summarization, image captioning, etc NLG models have been encapsulated in cloud APIs to serve over half a billion people worldwide and process over one hundred billion word generations per day. Thus, NLG APIs have already become essential profitable services in many commercial companies. Due to the substantial financial and intellectual investments, service providers adopt a pay-as-you-use policy to promote sustainable market growth. However, recent works have shown that cloud platforms suffer from financial losses imposed by model extraction attacks, which aim to imitate the functionality and utility of the victim services, thus violating the intellectual property (IP) of cloud APIs. This work targets at protecting IP of NLG APIs by identifying the attackers who have utilized watermarked responses from the victim NLG APIs. However, most existing watermarking techniques are not directly amenable for IP protection of NLG APIs. To bridge this gap, we first present a novel watermarking method for text generation APIs by conducting lexical modification to the original outputs. Compared with the competitive baselines, our watermark approach achieves better identifiable performance in terms of p-value, with fewer semantic losses. In addition, our watermarks are more understandable and intuitive to humans than the baselines. Finally, the empirical studies show our approach is also applicable to queries from different domains, and is effective on the attacker trained on a mixture of the corpus which includes less than 10\% watermarked samples.
Estimating the performance of a machine learning system is a longstanding challenge in artificial intelligence research. Today, this challenge is especially relevant given the emergence of systems which appear to increasingly outperform human beings. In some cases, this "superhuman" performance is readily demonstrated; for example by defeating legendary human players in traditional two player games. On the other hand, it can be challenging to evaluate classification models that potentially surpass human performance. Indeed, human annotations are often treated as a ground truth, which implicitly assumes the superiority of the human over any models trained on human annotations. In reality, human annotators can make mistakes and be subjective. Evaluating the performance with respect to a genuine oracle may be more objective and reliable, even when querying the oracle is expensive or impossible. In this paper, we first raise the challenge of evaluating the performance of both humans and models with respect to an oracle which is unobserved. We develop a theory for estimating the accuracy compared to the oracle, using only imperfect human annotations for reference. Our analysis provides a simple recipe for detecting and certifying superhuman performance in this setting, which we believe will assist in understanding the stage of current research on classification. We validate the convergence of the bounds and the assumptions of our theory on carefully designed toy experiments with known oracles. Moreover, we demonstrate the utility of our theory by meta-analyzing large-scale natural language processing tasks, for which an oracle does not exist, and show that under our assumptions a number of models from recent years are with high probability superhuman.
Machine-learning-as-a-service (MLaaS) has attracted millions of users to their outperforming sophisticated models. Although published as black-box APIs, the valuable models behind these services are still vulnerable to imitation attacks. Recently, a series of works have demonstrated that attackers manage to steal or extract the victim models. Nonetheless, none of the previous stolen models can outperform the original black-box APIs. In this work, we take the first step of showing that attackers could potentially surpass victims via unsupervised domain adaptation and multi-victim ensemble. Extensive experiments on benchmark datasets and real-world APIs validate that the imitators can succeed in outperforming the original black-box models. We consider this as a milestone in the research of imitation attack, especially on NLP APIs, as the superior performance could influence the defense or even publishing strategy of API providers.