Abstract:We study the problem of collision-free humanoid traversal in cluttered indoor scenes, such as hurdling over objects scattered on the floor, crouching under low-hanging obstacles, or squeezing through narrow passages. To achieve this goal, the humanoid needs to map its perception of surrounding obstacles with diverse spatial layouts and geometries to the corresponding traversal skills. However, the lack of an effective representation that captures humanoid-obstacle relationships during collision avoidance makes directly learning such mappings difficult. We therefore propose Humanoid Potential Field (HumanoidPF), which encodes these relationships as collision-free motion directions, significantly facilitating RL-based traversal skill learning. We also find that HumanoidPF exhibits a surprisingly negligible sim-to-real gap as a perceptual representation. To further enable generalizable traversal skills through diverse and challenging cluttered indoor scenes, we further propose a hybrid scene generation method, incorporating crops of realistic 3D indoor scenes and procedurally synthesized obstacles. We successfully transfer our policy to the real world and develop a teleoperation system where users could command the humanoid to traverse in cluttered indoor scenes with just a single click. Extensive experiments are conducted in both simulation and the real world to validate the effectiveness of our method. Demos and code can be found in our website: https://axian12138.github.io/CAT/.




Abstract:Bimanual dexterous manipulation remains significant challenges in robotics due to the high DoFs of each hand and their coordination. Existing single-hand manipulation techniques often leverage human demonstrations to guide RL methods but fail to generalize to complex bimanual tasks involving multiple sub-skills. In this paper, we introduce VTAO-BiManip, a novel framework that combines visual-tactile-action pretraining with object understanding to facilitate curriculum RL to enable human-like bimanual manipulation. We improve prior learning by incorporating hand motion data, providing more effective guidance for dual-hand coordination than binary tactile feedback. Our pretraining model predicts future actions as well as object pose and size using masked multimodal inputs, facilitating cross-modal regularization. To address the multi-skill learning challenge, we introduce a two-stage curriculum RL approach to stabilize training. We evaluate our method on a bottle-cap unscrewing task, demonstrating its effectiveness in both simulated and real-world environments. Our approach achieves a success rate that surpasses existing visual-tactile pretraining methods by over 20%.




Abstract:Robotic dexterous grasping is a challenging problem due to the high degree of freedom (DoF) and complex contacts of multi-fingered robotic hands. Existing deep reinforcement learning (DRL) based methods leverage human demonstrations to reduce sample complexity due to the high dimensional action space with dexterous grasping. However, less attention has been paid to hand-object interaction representations for high-level generalization. In this paper, we propose a novel geometric and spatial hand-object interaction representation, named DexRep, to capture dynamic object shape features and the spatial relations between hands and objects during grasping. DexRep comprises Occupancy Feature for rough shapes within sensing range by moving hands, Surface Feature for changing hand-object surface distances, and Local-Geo Feature for local geometric surface features most related to potential contacts. Based on the new representation, we propose a dexterous deep reinforcement learning method to learn a generalizable grasping policy DexRepNet. Experimental results show that our method outperforms baselines using existing representations for robotic grasping dramatically both in grasp success rate and convergence speed. It achieves a 93% grasping success rate on seen objects and higher than 80% grasping success rates on diverse objects of unseen categories in both simulation and real-world experiments.