Abstract:Bird's-Eye-View (BEV) representation has emerged as a mainstream paradigm for multi-view 3D object detection, demonstrating impressive perceptual capabilities. However, existing methods overlook the geometric quality of BEV representation, leaving it in a low-resolution state and failing to restore the authentic geometric information of the scene. In this paper, we identify the reasons why previous approaches are constrained by low BEV representation resolution and propose Radial-Cartesian BEV Sampling (RC-Sampling), enabling efficient generation of high-resolution dense BEV representations without the need for complex operators. Additionally, we design a novel In-Box Label to substitute the traditional depth label generated from the LiDAR points. This label reflects the actual geometric structure of objects rather than just their surfaces, injecting real-world geometric information into the BEV representation. Furthermore, in conjunction with the In-Box Label, a Centroid-Aware Inner Loss (CAI Loss) is developed to capture the fine-grained inner geometric structure of objects. Finally, we integrate the aforementioned modules into a novel multi-view 3D object detection framework, dubbed GeoBEV. Extensive experiments on the nuScenes dataset exhibit that GeoBEV achieves state-of-the-art performance, highlighting its effectiveness.
Abstract:Recent attention has been devoted to the pursuit of learning semantic segmentation models exclusively from image tags, a paradigm known as image-level Weakly Supervised Semantic Segmentation (WSSS). Existing attempts adopt the Class Activation Maps (CAMs) as priors to mine object regions yet observe the imbalanced activation issue, where only the most discriminative object parts are located. In this paper, we argue that the distribution discrepancy between the discriminative and the non-discriminative parts of objects prevents the model from producing complete and precise pseudo masks as ground truths. For this purpose, we propose a Pixel-Level Domain Adaptation (PLDA) method to encourage the model in learning pixel-wise domain-invariant features. Specifically, a multi-head domain classifier trained adversarially with the feature extraction is introduced to promote the emergence of pixel features that are invariant with respect to the shift between the source (i.e., the discriminative object parts) and the target (\textit{i.e.}, the non-discriminative object parts) domains. In addition, we come up with a Confident Pseudo-Supervision strategy to guarantee the discriminative ability of each pixel for the segmentation task, which serves as a complement to the intra-image domain adversarial training. Our method is conceptually simple, intuitive and can be easily integrated into existing WSSS methods. Taking several strong baseline models as instances, we experimentally demonstrate the effectiveness of our approach under a wide range of settings.
Abstract:Although multi-view 3D object detection based on the Bird's-Eye-View (BEV) paradigm has garnered widespread attention as an economical and deployment-friendly perception solution for autonomous driving, there is still a performance gap compared to LiDAR-based methods. In recent years, several cross-modal distillation methods have been proposed to transfer beneficial information from teacher models to student models, with the aim of enhancing performance. However, these methods face challenges due to discrepancies in feature distribution originating from different data modalities and network structures, making knowledge transfer exceptionally challenging. In this paper, we propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies, maintaining remarkable distillation effects without the need for pre-trained teacher models or cumbersome distillation strategies. Additionally, we design two Point Cloud Intensification (PCI) strategies to compensate for the sparsity of point clouds by frame combination and pseudo point assignment. Finally, we develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features by predicted elliptical Gaussian heatmap, further improving the model's performance. We integrate all the above innovations into a unified framework named FSD-BEV. Extensive experiments on the nuScenes dataset exhibit that FSD-BEV achieves state-of-the-art performance, highlighting its effectiveness. The code and models are available at: https://github.com/CocoBoom/fsd-bev.
Abstract:Detection pre-training methods for the DETR series detector have been extensively studied in natural scenes, e.g., DETReg. However, the detection pre-training remains unexplored in remote sensing scenes. In existing pre-training methods, alignment between object embeddings extracted from a pre-trained backbone and detector features is significant. However, due to differences in feature extraction methods, a pronounced feature discrepancy still exists and hinders the pre-training performance. The remote sensing images with complex environments and more densely distributed objects exacerbate the discrepancy. In this work, we propose a novel Mutually optimizing pre-training framework for remote sensing object Detection, dubbed as MutDet. In MutDet, we propose a systemic solution against this challenge. Firstly, we propose a mutual enhancement module, which fuses the object embeddings and detector features bidirectionally in the last encoder layer, enhancing their information interaction.Secondly, contrastive alignment loss is employed to guide this alignment process softly and simultaneously enhances detector features' discriminativity. Finally, we design an auxiliary siamese head to mitigate the task gap arising from the introduction of enhancement module. Comprehensive experiments on various settings show new state-of-the-art transfer performance. The improvement is particularly pronounced when data quantity is limited. When using 10% of the DIOR-R data, MutDet improves DetReg by 6.1% in AP50. Codes and models are available at: https://github.com/floatingstarZ/MutDet.
Abstract:Few-shot object detection~(FSOD), which aims to detect novel objects with limited annotated instances, has made significant progress in recent years. However, existing methods still suffer from biased representations, especially for novel classes in extremely low-shot scenarios. During fine-tuning, a novel class may exploit knowledge from similar base classes to construct its own feature distribution, leading to classification confusion and performance degradation. To address these challenges, we propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection. In our proposed method, we align the visual features with class name embeddings and replace the linear classifier with our semantic similarity classifier. Our method trains each region proposal to converge to the corresponding class embedding. Furthermore, we introduce a multimodal feature fusion to augment the vision-language communication, enabling a novel class to draw support explicitly from well-trained similar base classes. To prevent class confusion, we propose a semantic-aware max-margin loss, which adaptively applies a margin beyond similar classes. As a result, our method allows each novel class to construct a compact feature space without being confused with similar base classes. Extensive experiments on Pascal VOC and MS COCO demonstrate the superiority of our method.
Abstract:Detecting objects from aerial images poses significant challenges due to the following factors: 1) Aerial images typically have very large sizes, generally with millions or even hundreds of millions of pixels, while computational resources are limited. 2) Small object size leads to insufficient information for effective detection. 3) Non-uniform object distribution leads to computational resource wastage. To address these issues, we propose YOLC (You Only Look Clusters), an efficient and effective framework that builds on an anchor-free object detector, CenterNet. To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection. Additionally, we modify the regression loss using Gaussian Wasserstein distance (GWD) to obtain high-quality bounding boxes. Deformable convolution and refinement methods are employed in the detection head to enhance the detection of small objects. We perform extensive experiments on two aerial image datasets, including Visdrone2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
Abstract:Recently, learning open-vocabulary semantic segmentation from text supervision has achieved promising downstream performance. Nevertheless, current approaches encounter an alignment granularity gap owing to the absence of dense annotations, wherein they learn coarse image/region-text alignment during training yet perform group/pixel-level predictions at inference. Such discrepancy leads to suboptimal learning efficiency and inferior zero-shot segmentation results. In this paper, we introduce a Multi-Grained Cross-modal Alignment (MGCA) framework, which explicitly learns pixel-level alignment along with object- and region-level alignment to bridge the granularity gap without any dense annotations. Specifically, MGCA ingeniously constructs pseudo multi-granular semantic correspondences upon image-text pairs and collaborates with hard sampling strategies to facilitate fine-grained cross-modal contrastive learning. Further, we point out the defects of existing group and pixel prediction units in downstream segmentation and develop an adaptive semantic unit which effectively mitigates their dilemmas including under- and over-segmentation. Training solely on CC3M, our method achieves significant advancements over state-of-the-art methods, demonstrating its effectiveness and efficiency.
Abstract:Deep learning models are essential for scene classification, change detection, land cover segmentation, and other remote sensing image understanding tasks. Most backbones of existing remote sensing deep learning models are typically initialized by pre-trained weights obtained from ImageNet pre-training (IMP). However, domain gaps exist between remote sensing images and natural images (e.g., ImageNet), making deep learning models initialized by pre-trained weights of IMP perform poorly for remote sensing image understanding. Although some pre-training methods are studied in the remote sensing community, current remote sensing pre-training methods face the problem of vague generalization by only using remote sensing images. In this paper, we propose a novel remote sensing pre-training framework, Generic Knowledge Boosted Remote Sensing Pre-training (GeRSP), to learn robust representations from remote sensing and natural images for remote sensing understanding tasks. GeRSP contains two pre-training branches: (1) A self-supervised pre-training branch is adopted to learn domain-related representations from unlabeled remote sensing images. (2) A supervised pre-training branch is integrated into GeRSP for general knowledge learning from labeled natural images. Moreover, GeRSP combines two pre-training branches using a teacher-student architecture to simultaneously learn representations with general and special knowledge, which generates a powerful pre-trained model for deep learning model initialization. Finally, we evaluate GeRSP and other remote sensing pre-training methods on three downstream tasks, i.e., object detection, semantic segmentation, and scene classification. The extensive experimental results consistently demonstrate that GeRSP can effectively learn robust representations in a unified manner, improving the performance of remote sensing downstream tasks.
Abstract:Referring image segmentation (RIS) aims to segment objects in an image conditioning on free-from text descriptions. Despite the overwhelming progress, it still remains challenging for current approaches to perform well on cases with various text expressions or with unseen visual entities, limiting its further application. In this paper, we present a novel RIS approach, which substantially improves the generalization ability by addressing the two dilemmas mentioned above. Specially, to deal with unconstrained texts, we propose to boost a given expression with an explicit and crucial prompt, which complements the expression in a unified context, facilitating target capturing in the presence of linguistic style changes. Furthermore, we introduce a multi-modal fusion aggregation module with visual guidance from a powerful pretrained model to leverage spatial relations and pixel coherences to handle the incomplete target masks and false positive irregular clumps which often appear on unseen visual entities. Extensive experiments are conducted in the zero-shot cross-dataset settings and the proposed approach achieves consistent gains compared to the state-of-the-art, e.g., 4.15\%, 5.45\%, and 4.64\% mIoU increase on RefCOCO, RefCOCO+ and ReferIt respectively, demonstrating its effectiveness. Additionally, the results on GraspNet-RIS show that our approach also generalizes well to new scenarios with large domain shifts.
Abstract:Though feature-alignment based Domain Adaptive Object Detection (DAOD) have achieved remarkable progress, they ignore the source bias issue, i.e. the aligned features are more favorable towards the source domain, leading to a sub-optimal adaptation. Furthermore, the presence of domain shift between the source and target domains exacerbates the problem of inconsistent classification and localization in general detection pipelines. To overcome these challenges, we propose a novel Distillation-based Unbiased Alignment (DUA) framework for DAOD, which can distill the source features towards a more balanced position via a pre-trained teacher model during the training process, alleviating the problem of source bias effectively. In addition, we design a Target-Relevant Object Localization Network (TROLN), which can mine target-related knowledge to produce two classification-free metrics (IoU and centerness). Accordingly, we implement a Domain-aware Consistency Enhancing (DCE) strategy that utilizes these two metrics to further refine classification confidences, achieving a harmonization between classification and localization in cross-domain scenarios. Extensive experiments have been conducted to manifest the effectiveness of this method, which consistently improves the strong baseline by large margins, outperforming existing alignment-based works.