Oregon State University
Abstract:State abstraction enables sample-efficient learning and better task transfer in complex reinforcement learning environments. Recently, we proposed RePReL (Kokel et al. 2021), a hierarchical framework that leverages a relational planner to provide useful state abstractions for learning. We present a brief overview of this framework and the use of a dynamic probabilistic logic model to design these state abstractions. Our experiments show that RePReL not only achieves better performance and efficient learning on the task at hand but also demonstrates better generalization to unseen tasks.
Abstract:This paper summarizes our endeavors in the past few years in terms of explaining image classifiers, with the aim of including negative results and insights we have gained. The paper starts with describing the explainable neural network (XNN), which attempts to extract and visualize several high-level concepts purely from the deep network, without relying on human linguistic concepts. This helps users understand network classifications that are less intuitive and substantially improves user performance on a difficult fine-grained classification task of discriminating among different species of seagulls. Realizing that an important missing piece is a reliable heatmap visualization tool, we have developed I-GOS and iGOS++ utilizing integrated gradients to avoid local optima in heatmap generation, which improved the performance across all resolutions. During the development of those visualizations, we realized that for a significant number of images, the classifier has multiple different paths to reach a confident prediction. This has lead to our recent development of structured attention graphs (SAGs), an approach that utilizes beam search to locate multiple coarse heatmaps for a single image, and compactly visualizes a set of heatmaps by capturing how different combinations of image regions impact the confidence of a classifier. Through the research process, we have learned much about insights in building deep network explanations, the existence and frequency of multiple explanations, and various tricks of the trade that make explanations work. In this paper, we attempt to share those insights and opinions with the readers with the hope that some of them will be informative for future researchers on explainable deep learning.
Abstract:Multilingual Neural Machine Translation (NMT) enables one model to serve all translation directions, including ones that are unseen during training, i.e. zero-shot translation. Despite being theoretically attractive, current models often produce low quality translations -- commonly failing to even produce outputs in the right target language. In this work, we observe that off-target translation is dominant even in strong multilingual systems, trained on massive multilingual corpora. To address this issue, we propose a joint approach to regularize NMT models at both representation-level and gradient-level. At the representation level, we leverage an auxiliary target language prediction task to regularize decoder outputs to retain information about the target language. At the gradient level, we leverage a small amount of direct data (in thousands of sentence pairs) to regularize model gradients. Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance by +5.59 and +10.38 BLEU on WMT and OPUS datasets respectively. Moreover, experiments show that our method also works well when the small amount of direct data is not available.
Abstract:Attention maps are a popular way of explaining the decisions of convolutional networks for image classification. Typically, for each image of interest, a single attention map is produced, which assigns weights to pixels based on their importance to the classification. A single attention map, however, provides an incomplete understanding since there are often many other maps that explain a classification equally well. In this paper, we introduce structured attention graphs (SAGs), which compactly represent sets of attention maps for an image by capturing how different combinations of image regions impact a classifier's confidence. We propose an approach to compute SAGs and a visualization for SAGs so that deeper insight can be gained into a classifier's decisions. We conduct a user study comparing the use of SAGs to traditional attention maps for answering counterfactual questions about image classifications. Our results show that the users are more correct when answering comparative counterfactual questions based on SAGs compared to the baselines.
Abstract:We study an approach to offline reinforcement learning (RL) based on optimally solving finitely-represented MDPs derived from a static dataset of experience. This approach can be applied on top of any learned representation and has the potential to easily support multiple solution objectives as well as zero-shot adjustment to changing environments and goals. Our main contribution is to introduce the Deep Averagers with Costs MDP (DAC-MDP) and to investigate its solutions for offline RL. DAC-MDPs are a non-parametric model that can leverage deep representations and account for limited data by introducing costs for exploiting under-represented parts of the model. In theory, we show conditions that allow for lower-bounding the performance of DAC-MDP solutions. We also investigate the empirical behavior in a number of environments, including those with image-based observations. Overall, the experiments demonstrate that the framework can work in practice and scale to large complex offline RL problems.
Abstract:There have been significant efforts to interpret the encoder of Transformer-based encoder-decoder architectures for neural machine translation (NMT); meanwhile, the decoder remains largely unexamined despite its critical role. During translation, the decoder must predict output tokens by considering both the source-language text from the encoder and the target-language prefix produced in previous steps. In this work, we study how Transformer-based decoders leverage information from the source and target languages -- developing a universal probe task to assess how information is propagated through each module of each decoder layer. We perform extensive experiments on three major translation datasets (WMT En-De, En-Fr, and En-Zh). Our analysis provides insight on when and where decoders leverage different sources. Based on these insights, we demonstrate that the residual feed-forward module in each Transformer decoder layer can be dropped with minimal loss of performance -- a significant reduction in computation and number of parameters, and consequently a significant boost to both training and inference speed.
Abstract:Reward function specification can be difficult, even in simple environments. Realistic environments contain millions of states. Rewarding the agent for making a widget may be easy, but penalizing the multitude of possible negative side effects is hard. In toy environments, Attainable Utility Preservation (AUP) avoids side effects by penalizing shifts in the ability to achieve randomly generated goals. We scale this approach to large, randomly generated environments based on Conway's Game of Life. By preserving optimal value for a single randomly generated reward function, AUP incurs modest overhead, completes the specified task, and avoids side effects.
Abstract:There are notable examples of online search improving over hand-coded or learned policies (e.g. AlphaZero) for sequential decision making. It is not clear, however, whether or not policy improvement is guaranteed for many of these approaches, even when given a perfect evaluation function and transition model. Indeed, simple counter examples show that seemingly reasonable online search procedures can hurt performance compared to the original policy. To address this issue, we introduce the choice function framework for analyzing online search procedures for policy improvement. A choice function specifies the actions to be considered at every node of a search tree, with all other actions being pruned. Our main contribution is to give sufficient conditions for stationary and non-stationary choice functions to guarantee that the value achieved by online search is no worse than the original policy. In addition, we describe a general parametric class of choice functions that satisfy those conditions and present an illustrative use case of the framework's empirical utility.
Abstract:We present a new local entity disambiguation system. The key to our system is a novel approach for learning entity representations. In our approach we learn an entity aware extension of Embedding for Language Model (ELMo) which we call Entity-ELMo (E-ELMo). Given a paragraph containing one or more named entity mentions, each mention is first defined as a function of the entire paragraph (including other mentions), then they predict the referent entities. Utilizing E-ELMo for local entity disambiguation, we outperform all of the state-of-the-art local and global models on the popular benchmarks by improving about 0.5\% on micro average accuracy for AIDA test-b with Yago candidate set. The evaluation setup of the training data and candidate set are the same as our baselines for fair comparison.
Abstract:Deep learning has emerged as a compelling solution to many NLP tasks with remarkable performances. However, due to their opacity, such models are hard to interpret and trust. Recent work on explaining deep models has introduced approaches to provide insights toward the model's behaviour and predictions, which are helpful for assessing the reliability of the model's predictions. However, such methods do not improve the model's reliability. In this paper, we aim to teach the model to make the right prediction for the right reason by providing explanation training and ensuring the alignment of the model's explanation with the ground truth explanation. Our experimental results on multiple tasks and datasets demonstrate the effectiveness of the proposed method, which produces more reliable predictions while delivering better results compared to traditionally trained models.