Abstract:Animating stylized characters to match a reference motion sequence is a highly demanded task in film and gaming industries. Existing methods mostly focus on rigid deformations of characters' body, neglecting local deformations on the apparel driven by physical dynamics. They deform apparel the same way as the body, leading to results with limited details and unrealistic artifacts, e.g. body-apparel penetration. In contrast, we present a novel method aiming for high-quality motion transfer with realistic apparel animation. As existing datasets lack annotations necessary for generating realistic apparel animations, we build a new dataset named MMDMC, which combines stylized characters from the MikuMikuDance community with real-world Motion Capture data. We then propose a data-driven pipeline that learns to disentangle body and apparel deformations via two neural deformation modules. For body parts, we propose a geodesic attention block to effectively incorporate semantic priors into skeletal body deformation to tackle complex body shapes for stylized characters. Since apparel motion can significantly deviate from respective body joints, we propose to model apparel deformation in a non-linear vertex displacement field conditioned on its historic states. Extensive experiments show that our method produces results with superior quality for various types of apparel. Our dataset is released in https://github.com/rongakowang/MMDMC.
Abstract:Traditional shape descriptors have been gradually replaced by convolutional neural networks due to their superior performance in feature extraction and classification. The state-of-the-art methods recognize object shapes via image reconstruction or pixel classification. However , these methods are biased toward texture information and overlook the essential shape descriptions, thus, they fail to generalize to unseen shapes. We are the first to propose a fewshot shape descriptor (FSSD) to recognize object shapes given only one or a few samples. We employ an embedding module for FSSD to extract transformation-invariant shape features. Secondly, we develop a dual attention mechanism to decompose and reconstruct the shape features via learnable shape primitives. In this way, any shape can be formed through a finite set basis, and the learned representation model is highly interpretable and extendable to unseen shapes. Thirdly, we propose a decoding module to include the supervision of shape masks and edges and align the original and reconstructed shape features, enforcing the learned features to be more shape-aware. Lastly, all the proposed modules are assembled into a few-shot shape recognition scheme. Experiments on five datasets show that our FSSD significantly improves the shape classification compared to the state-of-the-art under the few-shot setting.
Abstract:Unlike current deep keypoint detectors that are trained to recognize limited number of body parts, few-shot keypoint detection (FSKD) attempts to localize any keypoints, including novel or base keypoints, depending on the reference samples. FSKD requires the semantically meaningful relations for keypoint similarity learning to overcome the ubiquitous noise and ambiguous local patterns. One rescue comes with vision transformer (ViT) as it captures long-range relations well. However, ViT may model irrelevant features outside of the region of interest due to the global attention matrix, thus degrading similarity learning between support and query features. In this paper, we present a novel saliency-guided vision transformer, dubbed SalViT, for few-shot keypoint detection. Our SalViT enjoys a uniquely designed masked self-attention and a morphology learner, where the former introduces saliency map as a soft mask to constrain the self-attention on foregrounds, while the latter leverages the so-called power normalization to adjust morphology of saliency map, realizing ``dynamically changing receptive field''. Moreover, as salinecy detectors add computations, we show that attentive masks of DINO transformer can replace saliency. On top of SalViT, we also investigate i) transductive FSKD that enhances keypoint representations with unlabelled data and ii) FSKD under occlusions. We show that our model performs well on five public datasets and achieves ~10% PCK higher than the normally trained model under severe occlusions.
Abstract:Current non-rigid object keypoint detectors perform well on a chosen kind of species and body parts, and require a large amount of labelled keypoints for training. Moreover, their heatmaps, tailored to specific body parts, cannot recognize novel keypoints (keypoints not labelled for training) on unseen species. We raise an interesting yet challenging question: how to detect both base (annotated for training) and novel keypoints for unseen species given a few annotated samples? Thus, we propose a versatile Few-shot Keypoint Detection (FSKD) pipeline, which can detect a varying number of keypoints of different kinds. Our FSKD provides the uncertainty estimation of predicted keypoints. Specifically, FSKD involves main and auxiliary keypoint representation learning, similarity learning, and keypoint localization with uncertainty modeling to tackle the localization noise. Moreover, we model the uncertainty across groups of keypoints by multivariate Gaussian distribution to exploit implicit correlations between neighboring keypoints. We show the effectiveness of our FSKD on (i) novel keypoint detection for unseen species, and (ii) few-shot Fine-Grained Visual Recognition (FGVR) and (iii) Semantic Alignment (SA) downstream tasks. For FGVR, detected keypoints improve the classification accuracy. For SA, we showcase a novel thin-plate-spline warping that uses estimated keypoint uncertainty under imperfect keypoint corespondences.
Abstract:Detecting the marking characters of industrial metal parts remains challenging due to low visual contrast, uneven illumination, corroded character structures, and cluttered background of metal part images. Affected by these factors, bounding boxes generated by most existing methods locate low-contrast text areas inaccurately. In this paper, we propose a refined feature-attentive network (RFN) to solve the inaccurate localization problem. Specifically, we design a parallel feature integration mechanism to construct an adaptive feature representation from multi-resolution features, which enhances the perception of multi-scale texts at each scale-specific level to generate a high-quality attention map. Then, an attentive refinement network is developed by the attention map to rectify the location deviation of candidate boxes. In addition, a re-scoring mechanism is designed to select text boxes with the best rectified location. Moreover, we construct two industrial scene text datasets, including a total of 102156 images and 1948809 text instances with various character structures and metal parts. Extensive experiments on our dataset and four public datasets demonstrate that our proposed method achieves the state-of-the-art performance.
Abstract:Over the years many ellipse detection algorithms spring up and are studied broadly, while the critical issue of detecting ellipses accurately and efficiently in real-world images remains a challenge. In this paper, an accurate and efficient ellipse detector by arc-support line segments is proposed. The arc-support line segment simplifies the complicated expression of curves in an image while retains the general properties including convexity and polarity, which grounds the successful detection of ellipses. The arc-support groups are formed by iteratively and robustly linking the arc-support line segments that latently belong to a common ellipse at point statistics level. Afterward, two complementary approaches, namely, selecting the group with higher saliency to fit an ellipse, and searching all the valid paired arc-support groups, are utilized to generate the initial ellipse set, both locally and globally. In ellipse fitting step, a superposition principle for the fast ellipse fitting is developed to accelerate the process. Then, the ellipse candidates can be formulated by the hierarchical clustering of 5D parameter space of initial ellipse set. Finally, the salient ellipse candidates are selected as detections subject to the stringent and effective verification. Extensive experiments on three public datasets are implemented and our method achieves the best F-measure scores compared to the state-of-the-art methods.