Abstract:Despite impressive advancements in Visual-Language Models (VLMs) for multi-modal tasks, their reliance on RGB inputs limits precise spatial understanding. Existing methods for integrating spatial cues, such as point clouds or depth, either require specialized sensors or fail to effectively exploit depth information for higher-order reasoning. To this end, we propose a novel Spatial Sense and Reasoning method, dubbed SSR, a novel framework that transforms raw depth data into structured, interpretable textual rationales. These textual rationales serve as meaningful intermediate representations to significantly enhance spatial reasoning capabilities. Additionally, we leverage knowledge distillation to compress the generated rationales into compact latent embeddings, which facilitate resource-efficient and plug-and-play integration into existing VLMs without retraining. To enable comprehensive evaluation, we introduce a new dataset named SSR-CoT, a million-scale visual-language reasoning dataset enriched with intermediate spatial reasoning annotations, and present SSRBench, a comprehensive multi-task benchmark. Extensive experiments on multiple benchmarks demonstrate SSR substantially improves depth utilization and enhances spatial reasoning, thereby advancing VLMs toward more human-like multi-modal understanding. Our project page is at https://yliu-cs.github.io/SSR.
Abstract:Vision-Language-Action (VLA) models have recently become highly prominent in the field of robotics. Leveraging vision-language foundation models trained on large-scale internet data, the VLA model can generate robotic actions directly from visual observations and human instructions through a single end-to-end neural network. Despite their effectiveness, current VLA models usually accept only one form of human prompting, language instructions, which may constrain their applicability in open-ended human-robot interactions. For example, a user might expect the robot to retrieve an object shown in an image, follow an instruction written on the whiteboard, or imitate a behavior demonstrated in a video, rather than relying solely on language-based descriptions. To address this gap, we introduce OE-VLA, which explores the potential of VLA models for open-ended multimodal instructions. Extensive results demonstrate that our OE-VLA not only achieves comparable performance to traditional VLA models with linguistic input but also delivers impressive results across four additional categories of open-ended tasks. The proposed methodology could significantly expand the applications of VLA models across various everyday scenarios and facilitate human-robot interaction.
Abstract:Vision-Language-Action (VLA) models have shown great potential in general robotic decision-making tasks via imitation learning. However, the variable quality of training data often constrains the performance of these models. On the other hand, offline Reinforcement Learning (RL) excels at learning robust policy models from mixed-quality data. In this paper, we introduce Reinforced robot GPT (ReinboT), a novel end-to-end VLA model that integrates the RL principle of maximizing cumulative reward. ReinboT achieves a deeper understanding of the data quality distribution by predicting dense returns that capture the nuances of manipulation tasks. The dense return prediction capability enables the robot to generate more robust decision-making actions, oriented towards maximizing future benefits. Extensive experiments show that ReinboT achieves state-of-the-art performance on the CALVIN mixed-quality dataset and exhibits superior few-shot learning and out-of-distribution generalization capabilities in real-world tasks.
Abstract:Dual-system VLA (Vision-Language-Action) architectures have become a hot topic in embodied intelligence research, but there is a lack of sufficient open-source work for further performance analysis and optimization. To address this problem, this paper will summarize and compare the structural designs of existing dual-system architectures, and conduct systematic empirical evaluations on the core design elements of existing dual-system architectures. Ultimately, it will provide a low-cost open-source model for further exploration. Of course, this project will continue to update with more experimental conclusions and open-source models with improved performance for everyone to choose from. Project page: https://openhelix-robot.github.io/.
Abstract:Compared to single-target adversarial attacks, multi-target attacks have garnered significant attention due to their ability to generate adversarial images for multiple target classes simultaneously. Existing generative approaches for multi-target attacks mainly analyze the effect of the use of target labels on noise generation from a theoretical perspective, lacking practical validation and comprehensive summarization. To address this gap, we first identify and validate that the semantic feature quality and quantity are critical factors affecting the transferability of targeted attacks: 1) Feature quality refers to the structural and detailed completeness of the implanted target features, as deficiencies may result in the loss of key discriminative information; 2) Feature quantity refers to the spatial sufficiency of the implanted target features, as inadequacy limits the victim model's attention to this feature. Based on these findings, we propose the 2D Tensor-Guided Adversarial Fusion (2D-TGAF) framework, which leverages the powerful generative capabilities of diffusion models to encode target labels into two-dimensional semantic tensors for guiding adversarial noise generation. Additionally, we design a novel masking strategy tailored for the training process, ensuring that parts of the generated noise retain complete semantic information about the target class. Extensive experiments on the standard ImageNet dataset demonstrate that 2D-TGAF consistently surpasses state-of-the-art methods in attack success rates, both on normally trained models and across various defense mechanisms.
Abstract:Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
Abstract:Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
Abstract:Developing versatile quadruped robots that can smoothly perform various actions and tasks in real-world environments remains a significant challenge. This paper introduces a novel vision-language-action (VLA) model, mixture of robotic experts (MoRE), for quadruped robots that aim to introduce reinforcement learning (RL) for fine-tuning large-scale VLA models with a large amount of mixed-quality data. MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model (MLLM), forming a sparse-activated mixture-of-experts model. This design enables the model to effectively adapt to a wide array of downstream tasks. Moreover, we employ a reinforcement learning-based training objective to train our model as a Q-function after deeply exploring the structural properties of our tasks. Effective learning from automatically collected mixed-quality data enhances data efficiency and model performance. Extensive experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios. We further validate our method in real-world scenarios, confirming the practicality of our approach and laying a solid foundation for future research on multi-task learning in quadruped robots.
Abstract:Vision-Language-Action (VLA) models demonstrate remarkable potential for generalizable robotic manipulation. The performance of VLA models can be improved by integrating with action chunking, a critical technique for effective control. However, action chunking linearly scales up action dimensions in VLA models with increased chunking sizes. This reduces the inference efficiency. To tackle this problem, we propose PD-VLA, the first parallel decoding framework for VLA models integrated with action chunking. Our framework reformulates autoregressive decoding as a nonlinear system solved by parallel fixed-point iterations. This approach preserves model performance with mathematical guarantees while significantly improving decoding speed. In addition, it enables training-free acceleration without architectural changes, as well as seamless synergy with existing acceleration techniques. Extensive simulations validate that our PD-VLA maintains competitive success rates while achieving 2.52 times execution frequency on manipulators (with 7 degrees of freedom) compared with the fundamental VLA model. Furthermore, we experimentally identify the most effective settings for acceleration. Finally, real-world experiments validate its high applicability across different tasks.
Abstract:This paper addresses the limitations of current humanoid robot control frameworks, which primarily rely on reactive mechanisms and lack autonomous interaction capabilities due to data scarcity. We propose Humanoid-VLA, a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control. Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions, allowing the model to learn universal motion patterns and action semantics. We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation. Furthermore, we introduce a self-supervised data augmentation strategy that automatically generates pseudoannotations directly derived from motion data. This process converts raw motion sequences into informative question-answer pairs, facilitating the effective use of large-scale unlabeled video data. Built upon whole-body control architectures, extensive experiments show that Humanoid-VLA achieves object interaction and environment exploration tasks with enhanced contextual awareness, demonstrating a more human-like capacity for adaptive and intelligent engagement.