University of Washington
Abstract:We consider a wireless networked control system (WNCS) with bidirectional imperfect links for real-time applications such as smart grids. To maintain the stability of WNCS, captured by the probability that plant state violates preset values, at minimal cost, heterogeneous physical processes are monitored by multiple sensors. This status information, such as dynamic plant state and Markov Process-based context information, is then received/estimated by the controller for remote control. However, scheduling multiple sensors and designing the controller with limited resources is challenging due to their coupling, delay, and transmission loss. We formulate a Constrained Markov Decision Problem (CMDP) to minimize violation probability with cost constraints. We reveal the relationship between the goal and different updating actions by analyzing the significance of information that incorporates goal-related usefulness and contextual importance. Subsequently, a goal-oriented deterministic scheduling policy is proposed. Two sensing-assisted control strategies and a control-aware estimation policy are proposed to improve the violation probability-cost tradeoff, integrated with the scheduling policy to form a goal-oriented co-design framework. Additionally, we explore retransmission in downlink transmission and qualitatively analyze its preference scenario. Simulation results demonstrate that the proposed goal-oriented co-design policy outperforms previous work in simultaneously reducing violation probability and cost
Abstract:In this paper, we investigate a model relevant to semantics-aware goal-oriented communications, and we propose a new metric that incorporates the utilization of information in addition to its timelines. Specifically, we consider the transmission of observations from an external process to a battery-powered receiver through status updates. These updates inform the receiver about the process status and enable actuation if sufficient energy is available to achieve a goal. We focus on a wireless power transfer (WPT) model, where the receiver receives energy from a dedicated power transmitter and occasionally from the data transmitter when they share a common channel. We analyze the Age of Information (AoI) and propose a new metric, the \textit{Age of Actuation (AoA), which is relevant when the receiver utilizes the status updates to perform actions in a timely manner}. We provide analytical characterizations of the average AoA and the violation probability of the AoA, demonstrating that AoA generalizes AoI. Moreover, we introduce and analytically characterize the \textit{Probability of Missing Actuation (PoMA)}; this metric becomes relevant also \textit{to quantify the incurred cost of a missed action}. We formulate unconstrained and constrained optimization problems for all the metrics and present numerical evaluations of our analytical results. This proposed set of metrics goes beyond the traditional timeliness metrics since the synergy of different flows is now considered.
Abstract:Data possesses significant value as it fuels advancements in AI. However, protecting the privacy of the data generated by end-user devices has become crucial. Federated Learning (FL) offers a solution by preserving data privacy during training. FL brings the model directly to User Equipments (UEs) for local training by an access point (AP). The AP periodically aggregates trained parameters from UEs, enhancing the model and sending it back to them. However, due to communication constraints, only a subset of UEs can update parameters during each global aggregation. Consequently, developing innovative scheduling algorithms is vital to enable complete FL implementation and enhance FL convergence. In this paper, we present a scheduling policy combining Age of Update (AoU) concepts and data Shapley metrics. This policy considers the freshness and value of received parameter updates from individual data sources and real-time channel conditions to enhance FL's operational efficiency. The proposed algorithm is simple, and its effectiveness is demonstrated through simulations.
Abstract:Many real-time applications of the Internet of Things (IoT) need to deal with correlated information generated by multiple sensors. The design of efficient status update strategies that minimize the Age of Correlated Information (AoCI) is a key factor. In this paper, we consider an IoT network consisting of sensors equipped with the energy harvesting (EH) capability. We optimize the average AoCI at the data fusion center (DFC) by appropriately managing the energy harvested by sensors, whose true battery states are unobservable during the decision-making process. Particularly, we first formulate the dynamic status update procedure as a partially observable Markov decision process (POMDP), where the environmental dynamics are unknown to the DFC. In order to address the challenges arising from the causality of energy usage, unknown environmental dynamics, unobservability of sensors'true battery states, and large-scale discrete action space, we devise a deep reinforcement learning (DRL)-based dynamic status update algorithm. The algorithm leverages the advantages of the soft actor-critic and long short-term memory techniques. Meanwhile, it incorporates our proposed action decomposition and mapping mechanism. Extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with available DRL algorithms for POMDPs.
Abstract:Intent classification (IC) plays an important role in task-oriented dialogue systems as it identifies user intents from given utterances. However, models trained on limited annotations for IC often suffer from a lack of generalization to unseen intent classes. We propose a novel pre-training method for text encoders that uses contrastive learning with intent psuedo-labels to produce embeddings that are well-suited for IC tasks. By applying this pre-training strategy, we also introduce the pre-trained intent-aware encoder (PIE). Specifically, we first train a tagger to identify key phrases within utterances that are crucial for interpreting intents. We then use these extracted phrases to create examples for pre-training a text encoder in a contrastive manner. As a result, our PIE model achieves up to 5.4% and 4.0% higher accuracy than the previous state-of-the-art pre-trained sentence encoder for the N-way zero- and one-shot settings on four IC datasets.
Abstract:In executable task-oriented semantic parsing, the system aims to translate users' utterances in natural language to machine-interpretable programs (API calls) that can be executed according to pre-defined API specifications. With the popularity of Large Language Models (LLMs), in-context learning offers a strong baseline for such scenarios, especially in data-limited regimes. However, LLMs are known to hallucinate and therefore pose a formidable challenge in constraining generated content. Thus, it remains uncertain if LLMs can effectively perform task-oriented utterance-to-API generation where respecting API's structural and task-specific constraints is crucial. In this work, we seek to measure, analyze and mitigate such constraints violations. First, we identify the categories of various constraints in obtaining API-semantics from task-oriented utterances, and define fine-grained metrics that complement traditional ones. Second, we leverage these metrics to conduct a detailed error analysis of constraints violations seen in state-of-the-art LLMs, which motivates us to investigate two mitigation strategies: Semantic-Retrieval of Demonstrations (SRD) and API-aware Constrained Decoding (API-CD). Our experiments show that these strategies are effective at reducing constraints violations and improving the quality of the generated API calls, but require careful consideration given their implementation complexity and latency.
Abstract:Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length $n$), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on $n$, by compressing the input into a representation whose size $r$ is independent of $n$ at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than $3\times$ efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
Abstract:We consider a source monitoring a stochastic process with a transmitter to transmit timely information through a wireless ON/OFF channel to a destination. We assume that once the source samples the data, the sampled data has to be processed to identify the state of the stochastic process. The processing can take place either at the source before transmission or after transmission at the destination. The objective is to minimize the distortion while keeping the age of information (AoI) that measures the timeliness of information under a certain threshold. We use a stationary randomized policy (SRP) framework to solve the formulated problem. We show that the two-dimensional discrete-time Markov chain considering the AoI and instantaneous distortion as the state is lumpable and we obtain the expression for the expected AoI under the SRP.
Abstract:Conventional text style transfer approaches for natural language focus on sentence-level style transfer without considering contextual information, and the style is described with attributes (e.g., formality). When applying style transfer on conversations such as task-oriented dialogues, existing approaches suffer from these limitations as context can play an important role and the style attributes are often difficult to define in conversations. In this paper, we introduce conversation style transfer as a few-shot learning problem, where the model learns to perform style transfer by observing only the target-style dialogue examples. We propose a novel in-context learning approach to solve the task with style-free dialogues as a pivot. Human evaluation shows that by incorporating multi-turn context, the model is able to match the target style while having better appropriateness and semantic correctness compared to utterance-level style transfer. Additionally, we show that conversation style transfer can also benefit downstream tasks. Results on multi-domain intent classification tasks show improvement in F1 scores after transferring the style of training data to match the style of test data.
Abstract:In this work, we study the problem of real-time tracking and reconstruction of an information source with the purpose of actuation. A device monitors an $N$-state Markov process and transmits status updates to a receiver over a wireless erasure channel. We consider a set of joint sampling and transmission policies, including a semantics-aware one, and we study their performance with respect to relevant metrics. Specifically, we investigate the real-time reconstruction error and its variance, the consecutive error, the cost of memory error, and the cost of actuation error. Furthermore, we propose a randomized stationary sampling and transmission policy and derive closed-form expressions for all aforementioned metrics. We then formulate an optimization problem for minimizing the real-time reconstruction error subject to a sampling cost constraint. Our results show that in the scenario of constrained sampling generation, the optimal randomized stationary policy outperforms all other sampling policies when the source is rapidly evolving. Otherwise, the semantics-aware policy performs the best.