Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Nicolas Le Roux

SIERRA, LIENS

An Effective Anti-Aliasing Approach for Residual Networks

Nov 20, 2020
Cristina Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Nicolas Le Roux, Ross Goroshin


  Access Paper or Ask Questions

Beyond variance reduction: Understanding the true impact of baselines on policy optimization

Aug 31, 2020
Wesley Chung, Valentin Thomas, Marlos C. Machado, Nicolas Le Roux


  Access Paper or Ask Questions

An operator view of policy gradient methods

Jun 22, 2020
Dibya Ghosh, Marlos C. Machado, Nicolas Le Roux


  Access Paper or Ask Questions

To Each Optimizer a Norm, To Each Norm its Generalization

Jun 11, 2020
Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, Nicolas Le Roux


  Access Paper or Ask Questions

The Geometry of Sign Gradient Descent

Feb 19, 2020
Lukas Balles, Fabian Pedregosa, Nicolas Le Roux


  Access Paper or Ask Questions

Information matrices and generalization

Jun 18, 2019
Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Mangazol, Yoshua Bengio, Nicolas Le Roux


  Access Paper or Ask Questions

Reducing the variance in online optimization by transporting past gradients

Jun 18, 2019
SĂ©bastien M. R. Arnold, Pierre-Antoine Manzagol, Reza Babanezhad, Ioannis Mitliagkas, Nicolas Le Roux

* Open-source implementation available at: https://github.com/seba-1511/igt.pth 

  Access Paper or Ask Questions

Anytime Tail Averaging

Feb 19, 2019
Nicolas Le Roux

* Added a specific section on the case of multiple accumulators when k_t is a constant 

  Access Paper or Ask Questions

The Value Function Polytope in Reinforcement Learning

Feb 15, 2019
Robert Dadashi, Adrien Ali TaĂŻga, Nicolas Le Roux, Dale Schuurmans, Marc G. Bellemare


  Access Paper or Ask Questions

Distributional reinforcement learning with linear function approximation

Feb 08, 2019
Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra

* Proceedings of AISTATS 2019 
* To appear 

  Access Paper or Ask Questions

Negative eigenvalues of the Hessian in deep neural networks

Feb 06, 2019
Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol


  Access Paper or Ask Questions

A Geometric Perspective on Optimal Representations for Reinforcement Learning

Jan 31, 2019
Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle


  Access Paper or Ask Questions

Understanding the impact of entropy on policy optimization

Nov 29, 2018
Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans


  Access Paper or Ask Questions

Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods

Mar 31, 2018
Robert M. Gower, Nicolas Le Roux, Francis Bach

* 17 pages, 2 figures, 1 table 

  Access Paper or Ask Questions

Distributed SAGA: Maintaining linear convergence rate with limited communication

May 29, 2017
Clément Calauzènes, Nicolas Le Roux


  Access Paper or Ask Questions

A comparative study of counterfactual estimators

May 02, 2017
Thomas Nedelec, Nicolas Le Roux, Vianney Perchet


  Access Paper or Ask Questions

Tighter bounds lead to improved classifiers

Dec 28, 2016
Nicolas Le Roux


  Access Paper or Ask Questions

Efficient iterative policy optimization

Dec 28, 2016
Nicolas Le Roux

* 12 pages 

  Access Paper or Ask Questions

Minimizing Finite Sums with the Stochastic Average Gradient

May 11, 2016
Mark Schmidt, Nicolas Le Roux, Francis Bach

* Revision from January 2015 submission. Major changes: updated literature follow and discussion of subsequent work, additional Lemma showing the validity of one of the formulas, somewhat simplified presentation of Lyapunov bound, included code needed for checking proofs rather than the polynomials generated by the code, added error regions to the numerical experiments 

  Access Paper or Ask Questions

A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets

Mar 11, 2013
Nicolas Le Roux, Mark Schmidt, Francis Bach

* The notable changes over the current version: - worked example of convergence rates showing SAG can be faster than first-order methods - pointing out that the storage cost is O(n) for linear models - the more-stable line-search - comparison to additional optimal SG methods - comparison to rates of coordinate descent methods in quadratic case 

  Access Paper or Ask Questions

Local Component Analysis

Dec 10, 2012
Nicolas Le Roux, Francis Bach


  Access Paper or Ask Questions

Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization

Dec 01, 2011
Mark Schmidt, Nicolas Le Roux, Francis Bach

* Neural Information Processing Systems (2011) 

  Access Paper or Ask Questions

Weakly Supervised Learning of Foreground-Background Segmentation using Masked RBMs

Jul 19, 2011
Nicolas Heess, Nicolas Le Roux, John Winn

* International Conference on Artificial Neural Networks (2011) 

  Access Paper or Ask Questions