Abstract:Unlike English letters, Chinese characters have rich and specific meanings. Usually, the meaning of a word can be derived from its constituent characters in some way. Several previous works on syntactic parsing propose to annotate shallow word-internal structures for better utilizing character-level information. This work proposes to model the deep internal structures of Chinese words as dependency trees with 11 labels for distinguishing syntactic relationships. First, based on newly compiled annotation guidelines, we manually annotate a word-internal structure treebank (WIST) consisting of over 30K multi-char words from Chinese Penn Treebank. To guarantee quality, each word is independently annotated by two annotators and inconsistencies are handled by a third senior annotator. Second, we present detailed and interesting analysis on WIST to reveal insights on Chinese word formation. Third, we propose word-internal structure parsing as a new task, and conduct benchmark experiments using a competitive dependency parser. Finally, we present two simple ways to encode word-internal structures, leading to promising gains on the sentence-level syntactic parsing task.
Abstract:As a natural language generation task, it is challenging to generate informative and coherent review text. In order to enhance the informativeness of the generated text, existing solutions typically learn to copy entities or triples from knowledge graphs (KGs). However, they lack overall consideration to select and arrange the incorporated knowledge, which tends to cause text incoherence. To address the above issue, we focus on improving entity-centric coherence of the generated reviews by leveraging the semantic structure of KGs. In this paper, we propose a novel Coherence Enhanced Text Planning model (CETP) based on knowledge graphs (KGs) to improve both global and local coherence for review generation. The proposed model learns a two-level text plan for generating a document: (1) the document plan is modeled as a sequence of sentence plans in order, and (2) the sentence plan is modeled as an entity-based subgraph from KG. Local coherence can be naturally enforced by KG subgraphs through intra-sentence correlations between entities. For global coherence, we design a hierarchical self-attentive architecture with both subgraph- and node-level attention to enhance the correlations between subgraphs. To our knowledge, we are the first to utilize a KG-based text planning model to enhance text coherence for review generation. Extensive experiments on three datasets confirm the effectiveness of our model on improving the content coherence of generated texts.
Abstract:Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.
Abstract:Personalized review generation (PRG) aims to automatically produce review text reflecting user preference, which is a challenging natural language generation task. Most of previous studies do not explicitly model factual description of products, tending to generate uninformative content. Moreover, they mainly focus on word-level generation, but cannot accurately reflect more abstractive user preference in multiple aspects. To address the above issues, we propose a novel knowledge-enhanced PRG model based on capsule graph neural network~(Caps-GNN). We first construct a heterogeneous knowledge graph (HKG) for utilizing rich item attributes. We adopt Caps-GNN to learn graph capsules for encoding underlying characteristics from the HKG. Our generation process contains two major steps, namely aspect sequence generation and sentence generation. First, based on graph capsules, we adaptively learn aspect capsules for inferring the aspect sequence. Then, conditioned on the inferred aspect label, we design a graph-based copy mechanism to generate sentences by incorporating related entities or words from HKG. To our knowledge, we are the first to utilize knowledge graph for the PRG task. The incorporated KG information is able to enhance user preference at both aspect and word levels. Extensive experiments on three real-world datasets have demonstrated the effectiveness of our model on the PRG task.
Abstract:Spatio-temporal video grounding aims to retrieve the spatio-temporal tube of a queried object according to the given sentence. Currently, most existing grounding methods are restricted to well-aligned segment-sentence pairs. In this paper, we explore spatio-temporal video grounding on unaligned data and multi-form sentences. This challenging task requires to capture critical object relations to identify the queried target. However, existing approaches cannot distinguish notable objects and remain in ineffective relation modeling between unnecessary objects. Thus, we propose a novel object-aware multi-branch relation network for object-aware relation discovery. Concretely, we first devise multiple branches to develop object-aware region modeling, where each branch focuses on a crucial object mentioned in the sentence. We then propose multi-branch relation reasoning to capture critical object relationships between the main branch and auxiliary branches. Moreover, we apply a diversity loss to make each branch only pay attention to its corresponding object and boost multi-branch learning. The extensive experiments show the effectiveness of our proposed method.
Abstract:Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.