Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Federated XGBoost on Sample-Wise Non-IID Data


Sep 03, 2022
Katelinh Jones, Yuya Jeremy Ong, Yi Zhou, Nathalie Baracaldo

* 9 Pages, 1 figure, 3 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Federated Unlearning: How to Efficiently Erase a Client in FL?


Jul 12, 2022
Anisa Halimi, Swanand Kadhe, Ambrish Rawat, Nathalie Baracaldo

* Updatable ML (UpML) Workshop, International Conference on Machine Learning (ICML) 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Distributed and Elastic Aggregation Service for Scalable Federated Learning Systems


Apr 16, 2022
Ahmad Khan, Yuze Li, Ali Anwar, Yue Cheng, Thang Hoang, Nathalie Baracaldo, Ali Butt

* 10 pages, 14 figures, 1 table 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards an Accountable and Reproducible Federated Learning: A FactSheets Approach


Feb 25, 2022
Nathalie Baracaldo, Ali Anwar, Mark Purcell, Ambrish Rawat, Mathieu Sinn, Bashar Altakrouri, Dian Balta, Mahdi Sellami, Peter Kuhn, Ulrich Schopp, Matthias Buchinger

* 16 pages, 4 figures, 2 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Single-shot Hyper-parameter Optimization for Federated Learning: A General Algorithm & Analysis


Feb 16, 2022
Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, Heiko Ludwig

* arXiv admin note: substantial text overlap with arXiv:2112.08524 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning


Dec 15, 2021
Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, Heiko Ludwig


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Privacy-Preserving Machine Learning: Methods, Challenges and Directions


Aug 10, 2021
Runhua Xu, Nathalie Baracaldo, James Joshi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

LEGATO: A LayerwisE Gradient AggregaTiOn Algorithm for Mitigating Byzantine Attacks in Federated Learning


Jul 26, 2021
Kamala Varma, Yi Zhou, Nathalie Baracaldo, Ali Anwar


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

FedV: Privacy-Preserving Federated Learning over Vertically Partitioned Data


Mar 05, 2021
Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, James Joshi, Heiko Ludwig


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated Learning


Feb 01, 2021
Syed Zawad, Ahsan Ali, Pin-Yu Chen, Ali Anwar, Yi Zhou, Nathalie Baracaldo, Yuan Tian, Feng Yan

* Accepted in AAAI 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>