Abstract:For large language models (LLMs), reasoning over graphs could help solve many problems. Prior work has tried to improve LLM graph reasoning by examining how best to serialize graphs as text and by combining GNNs and LLMs. However, the merits of such approaches remain unclear, so we empirically answer the following research questions: (1) Can LLMs learn to solve fundamental graph tasks without specialized graph encoding models?, (2) Can LLMs generalize learned solutions to unseen graph structures or tasks?, and (3) What are the merits of competing approaches to learn graph tasks? We show that even small LLMs can learn to solve graph tasks by training them with instructive chain-of-thought solutions, and this training generalizes, without specialized graph encoders, to new tasks and graph structures.
Abstract:Large language models (LLMs) are increasingly being applied to black-box optimization tasks, from program synthesis to molecule design. Prior work typically leverages in-context learning to iteratively guide the model towards better solutions. Such methods, however, often struggle to balance exploration of new solution spaces with exploitation of high-reward ones. Recently, test-time training (TTT) with synthetic data has shown promise in improving solution quality. However, the need for hand-crafted training data tailored to each task limits feasibility and scalability across domains. To address this problem, we introduce MiGrATe-a method for online TTT that uses GRPO as a search algorithm to adapt LLMs at inference without requiring external training data. MiGrATe operates via a mixed-policy group construction procedure that combines on-policy sampling with two off-policy data selection techniques: greedy sampling, which selects top-performing past completions, and neighborhood sampling (NS), which generates completions structurally similar to high-reward ones. Together, these components bias the policy gradient towards exploitation of promising regions in solution space, while preserving exploration through on-policy sampling. We evaluate MiGrATe on three challenging domains-word search, molecule optimization, and hypothesis+program induction on the Abstraction and Reasoning Corpus (ARC)-and find that it consistently outperforms both inference-only and TTT baselines, demonstrating the potential of online TTT as a solution for complex search tasks without external supervision.
Abstract:A KG represents a network of entities and illustrates relationships between them. KGs are used for various applications, including semantic search and discovery, reasoning, decision-making, natural language processing, machine learning, and recommendation systems. Triple (subject-relation-object) extraction from text is the fundamental building block of KG construction and has been widely studied, for example, in early benchmarks such as ACE 2002 to more recent ones, such as WebNLG 2020, REBEL and SynthIE. While the use of LLMs is explored for KG construction, handcrafting reasonable task-specific prompts for LLMs is a labour-intensive exercise and can be brittle due to subtle changes in the LLM models employed. Recent work in NLP tasks (e.g. autonomy generation) uses automatic prompt optimization/engineering to address this challenge by generating optimal or near-optimal task-specific prompts given input-output examples. This empirical study explores the application of automatic prompt optimization for the triple extraction task using experimental benchmarking. We evaluate different settings by changing (a) the prompting strategy, (b) the LLM being used for prompt optimization and task execution, (c) the number of canonical relations in the schema (schema complexity), (d) the length and diversity of input text, (e) the metric used to drive the prompt optimization, and (f) the dataset being used for training and testing. We evaluate three different automatic prompt optimizers, namely, DSPy, APE, and TextGrad and use two different triple extraction datasets, SynthIE and REBEL. Through rigorous empirical evaluation, our main contribution highlights that automatic prompt optimization techniques can generate reasonable prompts similar to humans for triple extraction. In turn, these optimized prompts achieve improved results, particularly with increasing schema complexity and text size.
Abstract:Text-to-SQL aims to translate natural language queries into SQL statements, which is practical as it enables anyone to easily retrieve the desired information from databases. Recently, many existing approaches tackle this problem with Large Language Models (LLMs), leveraging their strong capability in understanding user queries and generating corresponding SQL code. Yet, the parametric knowledge in LLMs might be limited to covering all the diverse and domain-specific queries that require grounding in various database schemas, which makes generated SQLs less accurate oftentimes. To tackle this, we propose constructing the knowledge base for text-to-SQL, a foundational source of knowledge, from which we retrieve and generate the necessary knowledge for given queries. In particular, unlike existing approaches that either manually annotate knowledge or generate only a few pieces of knowledge for each query, our knowledge base is comprehensive, which is constructed based on a combination of all the available questions and their associated database schemas along with their relevant knowledge, and can be reused for unseen databases from different datasets and domains. We validate our approach on multiple text-to-SQL datasets, considering both the overlapping and non-overlapping database scenarios, where it outperforms relevant baselines substantially.
Abstract:Cross encoders (CEs) are trained with sentence pairs to detect relatedness. As CEs require sentence pairs at inference, the prevailing view is that they can only be used as re-rankers in information retrieval pipelines. Dual encoders (DEs) are instead used to embed sentences, where sentence pairs are encoded by two separate encoders with shared weights at training, and a loss function that ensures the pair's embeddings lie close in vector space if the sentences are related. DEs however, require much larger datasets to train, and are less accurate than CEs. We report a curious finding that embeddings from earlier layers of CEs can in fact be used within an information retrieval pipeline. We show how to exploit CEs to distill a lighter-weight DE, with a 5.15x speedup in inference time.
Abstract:Dataset distillation generates a small set of information-rich instances from a large dataset, resulting in reduced storage requirements, privacy or copyright risks, and computational costs for downstream modeling, though much of the research has focused on the image data modality. We study tabular data distillation, which brings in novel challenges such as the inherent feature heterogeneity and the common use of non-differentiable learning models (such as decision tree ensembles and nearest-neighbor predictors). To mitigate these challenges, we present $\texttt{TDColER}$, a tabular data distillation framework via column embeddings-based representation learning. To evaluate this framework, we also present a tabular data distillation benchmark, ${{\sf \small TDBench}}$. Based on an elaborate evaluation on ${{\sf \small TDBench}}$, resulting in 226,890 distilled datasets and 548,880 models trained on them, we demonstrate that $\texttt{TDColER}$ is able to boost the distilled data quality of off-the-shelf distillation schemes by 0.5-143% across 7 different tabular learning models.
Abstract:Post-training of pre-trained LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning (RLHF or DPO) stage, is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, sequential training is sub-optimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. We theoretically prove the sub-optimality of sequential post-training. Furthermore, we propose a practical joint post-training framework with theoretical convergence guarantees and empirically outperforms sequential post-training framework, while having similar computational cost. Our code is available at https://github.com/heshandevaka/XRIGHT.
Abstract:Enterprises have a growing need to identify relevant tables in data lakes; e.g. tables that are unionable, joinable, or subsets of each other. Tabular neural models can be helpful for such data discovery tasks. In this paper, we present TabSketchFM, a neural tabular model for data discovery over data lakes. First, we propose a novel pre-training sketch-based approach to enhance the effectiveness of data discovery techniques in neural tabular models. Second, to further finetune the pretrained model for several downstream tasks, we develop LakeBench, a collection of 8 benchmarks to help with different data discovery tasks such as finding tasks that are unionable, joinable, or subsets of each other. We then show on these finetuning tasks that TabSketchFM achieves state-of-the art performance compared to existing neural models. Third, we use these finetuned models to search for tables that are unionable, joinable, or can be subsets of each other. Our results demonstrate improvements in F1 scores for search compared to state-of-the-art techniques (even up to 70% improvement in a joinable search benchmark). Finally, we show significant transfer across datasets and tasks establishing that our model can generalize across different tasks over different data lakes
Abstract:Large Language Models (LLMs) have been observed to perform well on a wide range of downstream tasks when fine-tuned on domain-specific data. However, such data may not be readily available in many applications, motivating zero-shot or few-shot approaches using domain-adjacent models. While several fine-tuned models for various tasks are available, finding an appropriate domain-adjacent model for a given task is often not straight forward. In this paper, we study DAFT-E, a framework that utilizes an Ensemble of Domain-Adjacent Fine-Tuned Foundation Models for few-shot problems. We show that for zero-shot problems, this ensembling method provides an accuracy performance close to that of the single best model. With few-shot problems, this performance improves further, at which point DEFT-E can outperform any single domain-adjacent model while requiring much less data for domain-specific fine-tuning.
Abstract:Online planner selection is the task of choosing a solver out of a predefined set for a given planning problem. As planning is computationally hard, the performance of solvers varies greatly on planning problems. Thus, the ability to predict their performance on a given problem is of great importance. While a variety of learning methods have been employed, for classical cost-optimal planning the prevailing approach uses Graph Neural Networks (GNNs). In this work, we continue the line of work on using GNNs for online planner selection. We perform a thorough investigation of the impact of the chosen GNN model, graph representation and node features, as well as prediction task. Going further, we propose using the graph representation obtained by a GNN as an input to the Extreme Gradient Boosting (XGBoost) model, resulting in a more resource-efficient yet accurate approach. We show the effectiveness of a variety of GNN-based online planner selection methods, opening up new exciting avenues for research on online planner selection.