Abstract:Referring Video Object Segmentation (R-VOS) methods face challenges in maintaining consistent object segmentation due to temporal context variability and the presence of other visually similar objects. We propose an end-to-end R-VOS paradigm that explicitly models temporal instance consistency alongside the referring segmentation. Specifically, we introduce a novel hybrid memory that facilitates inter-frame collaboration for robust spatio-temporal matching and propagation. Features of frames with automatically generated high-quality reference masks are propagated to segment the remaining frames based on multi-granularity association to achieve temporally consistent R-VOS. Furthermore, we propose a new Mask Consistency Score (MCS) metric to evaluate the temporal consistency of video segmentation. Extensive experiments demonstrate that our approach enhances temporal consistency by a significant margin, leading to top-ranked performance on popular R-VOS benchmarks, i.e., Ref-YouTube-VOS (67.1%) and Ref-DAVIS17 (65.6%).
Abstract:Most existing weakly supervised semantic segmentation (WSSS) methods rely on Class Activation Mapping (CAM) to extract coarse class-specific localization maps using image-level labels. Prior works have commonly used an off-line heuristic thresholding process that combines the CAM maps with off-the-shelf saliency maps produced by a general pre-trained saliency model to produce more accurate pseudo-segmentation labels. We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from these saliency maps and the significant inter-task correlation between saliency detection and semantic segmentation. In the proposed AuxSegNet+, saliency detection and multi-label image classification are used as auxiliary tasks to improve the primary task of semantic segmentation with only image-level ground-truth labels. We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps. In particular, we propose a cross-task dual-affinity learning module to learn both pairwise and unary affinities, which are used to enhance the task-specific features and predictions by aggregating both query-dependent and query-independent global context for both saliency detection and semantic segmentation. The learned cross-task pairwise affinity can also be used to refine and propagate CAM maps to provide better pseudo labels for both tasks. Iterative improvement of segmentation performance is enabled by cross-task affinity learning and pseudo-label updating. Extensive experiments demonstrate the effectiveness of the proposed approach with new state-of-the-art WSSS results on the challenging PASCAL VOC and MS COCO benchmarks.
Abstract:While latent diffusion models (LDMs) excel at creating imaginative images, they often lack precision in semantic fidelity and spatial control over where objects are generated. To address these deficiencies, we introduce the Box-it-to-Bind-it (B2B) module - a novel, training-free approach for improving spatial control and semantic accuracy in text-to-image (T2I) diffusion models. B2B targets three key challenges in T2I: catastrophic neglect, attribute binding, and layout guidance. The process encompasses two main steps: i) Object generation, which adjusts the latent encoding to guarantee object generation and directs it within specified bounding boxes, and ii) attribute binding, guaranteeing that generated objects adhere to their specified attributes in the prompt. B2B is designed as a compatible plug-and-play module for existing T2I models, markedly enhancing model performance in addressing the key challenges. We evaluate our technique using the established CompBench and TIFA score benchmarks, demonstrating significant performance improvements compared to existing methods. The source code will be made publicly available at https://github.com/nextaistudio/BoxIt2BindIt.
Abstract:This review thoroughly examines the role of semantically-aware Neural Radiance Fields (NeRFs) in visual scene understanding, covering an analysis of over 250 scholarly papers. It explores how NeRFs adeptly infer 3D representations for both stationary and dynamic objects in a scene. This capability is pivotal for generating high-quality new viewpoints, completing missing scene details (inpainting), conducting comprehensive scene segmentation (panoptic segmentation), predicting 3D bounding boxes, editing 3D scenes, and extracting object-centric 3D models. A significant aspect of this study is the application of semantic labels as viewpoint-invariant functions, which effectively map spatial coordinates to a spectrum of semantic labels, thus facilitating the recognition of distinct objects within the scene. Overall, this survey highlights the progression and diverse applications of semantically-aware neural radiance fields in the context of visual scene interpretation.
Abstract:Flowcharts and mind maps, collectively known as flowmind, are vital in daily activities, with hand-drawn versions facilitating real-time collaboration. However, there's a growing need to digitize them for efficient processing. Automated conversion methods are essential to overcome manual conversion challenges. Existing sketch recognition methods face limitations in practical situations, being field-specific and lacking digital conversion steps. Our paper introduces the Flowmind2digital method and hdFlowmind dataset to address these challenges. Flowmind2digital, utilizing neural networks and keypoint detection, achieves a record 87.3% accuracy on our dataset, surpassing previous methods by 11.9%. The hdFlowmind dataset, comprising 1,776 annotated flowminds across 22 scenarios, outperforms existing datasets. Additionally, our experiments emphasize the importance of simple graphics, enhancing accuracy by 9.3%.
Abstract:Radio Frequency Interference (RFI) detection and mitigation is critical for enabling and maximising the scientific output of radio telescopes. The emergence of machine learning methods capable of handling large datasets has led to their application in radio astronomy, particularly in RFI detection. Spiking Neural Networks (SNNs), inspired by biological systems, are well-suited for processing spatio-temporal data. This study introduces the first application of SNNs to an astronomical data-processing task, specifically RFI detection. We adapt the nearest-latent-neighbours (NLN) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal spiking neurons. We evaluate performance with the simulated HERA telescope and hand-labelled LOFAR dataset that the original authors provided. We additionally evaluate performance with a new MeerKAT-inspired simulation dataset. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is, therefore, an additional contribution. Our SNN approach remains competitive with the original NLN algorithm and AOFlagger in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and MeerKAT datasets. However, our method maintains this performance while completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs as a promising avenue for machine-learning-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
Abstract:Compositional Zero-Shot Learning (CZSL) has emerged as an essential paradigm in machine learning, aiming to overcome the constraints of traditional zero-shot learning by incorporating compositional thinking into its methodology. Conventional zero-shot learning has difficulty managing unfamiliar combinations of seen and unseen classes because it depends on pre-defined class embeddings. In contrast, Compositional Zero-Shot Learning uses the inherent hierarchies and structural connections among classes, creating new class representations by combining attributes, components, or other semantic elements. In our paper, we propose a novel framework that for the first time combines the Modern Hopfield Network with a Mixture of Experts (HOMOE) to classify the compositions of previously unseen objects. Specifically, the Modern Hopfield Network creates a memory that stores label prototypes and identifies relevant labels for a given input image. Following this, the Mixture of Expert models integrates the image with the fitting prototype to produce the final composition classification. Our approach achieves SOTA performance on several benchmarks, including MIT-States and UT-Zappos. We also examine how each component contributes to improved generalization.
Abstract:Neural Radiance Fields (NeRF) is a novel implicit 3D reconstruction method that shows immense potential and has been gaining increasing attention. It enables the reconstruction of 3D scenes solely from a set of photographs. However, its real-time rendering capability, especially for interactive real-time rendering of large-scale scenes, still has significant limitations. To address these challenges, in this paper, we propose a novel neural rendering system called UE4-NeRF, specifically designed for real-time rendering of large-scale scenes. We partitioned each large scene into different sub-NeRFs. In order to represent the partitioned independent scene, we initialize polygonal meshes by constructing multiple regular octahedra within the scene and the vertices of the polygonal faces are continuously optimized during the training process. Drawing inspiration from Level of Detail (LOD) techniques, we trained meshes of varying levels of detail for different observation levels. Our approach combines with the rasterization pipeline in Unreal Engine 4 (UE4), achieving real-time rendering of large-scale scenes at 4K resolution with a frame rate of up to 43 FPS. Rendering within UE4 also facilitates scene editing in subsequent stages. Furthermore, through experiments, we have demonstrated that our method achieves rendering quality comparable to state-of-the-art approaches. Project page: https://jamchaos.github.io/UE4-NeRF/.
Abstract:Diagnostic investigation has an important role in risk stratification and clinical decision making of patients with suspected and documented Coronary Artery Disease (CAD). However, the majority of existing tools are primarily focused on the selection of gatekeeper tests, whereas only a handful of systems contain information regarding the downstream testing or treatment. We propose a multi-task deep learning model to support risk stratification and down-stream test selection for patients undergoing Coronary Computed Tomography Angiography (CCTA). The analysis included 14,021 patients who underwent CCTA between 2006 and 2017. Our novel multitask deep learning framework extends the state-of-the art Perceiver model to deal with real-world CCTA report data. Our model achieved an Area Under the receiver operating characteristic Curve (AUC) of 0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests. Our proposed deep learning model can accurately estimate the likelihood of CAD and provide recommended downstream tests based on prior CCTA data. In clinical practice, the utilization of such an approach could bring a paradigm shift in risk stratification and downstream management. Despite significant progress using deep learning models for tabular data, they do not outperform gradient boosting decision trees, and further research is required in this area. However, neural networks appear to benefit more readily from multi-task learning than tree-based models. This could offset the shortcomings of using single task learning approach when working with tabular data.
Abstract:This paper proposes a novel transformer-based framework that aims to enhance weakly supervised semantic segmentation (WSSS) by generating accurate class-specific object localization maps as pseudo labels. Building upon the observation that the attended regions of the one-class token in the standard vision transformer can contribute to a class-agnostic localization map, we explore the potential of the transformer model to capture class-specific attention for class-discriminative object localization by learning multiple class tokens. We introduce a Multi-Class Token transformer, which incorporates multiple class tokens to enable class-aware interactions with the patch tokens. To achieve this, we devise a class-aware training strategy that establishes a one-to-one correspondence between the output class tokens and the ground-truth class labels. Moreover, a Contrastive-Class-Token (CCT) module is proposed to enhance the learning of discriminative class tokens, enabling the model to better capture the unique characteristics and properties of each class. As a result, class-discriminative object localization maps can be effectively generated by leveraging the class-to-patch attentions associated with different class tokens. To further refine these localization maps, we propose the utilization of patch-level pairwise affinity derived from the patch-to-patch transformer attention. Furthermore, the proposed framework seamlessly complements the Class Activation Mapping (CAM) method, resulting in significantly improved WSSS performance on the PASCAL VOC 2012 and MS COCO 2014 datasets. These results underline the importance of the class token for WSSS.