.Project Based Learning Center, ETH Zürich, Switzerland
Abstract:Head-to-head racing against opponents is a challenging and emerging topic in the domain of autonomous racing. We propose Predictive Spliner, a data-driven overtaking planner that learns the behavior of opponents through Gaussian Process (GP) regression, which is then leveraged to compute viable overtaking maneuvers in future sections of the racing track. Experimentally validated on a 1:10 scale autonomous racing platform using Light Detection and Ranging (LiDAR) information to perceive the opponent, Predictive Spliner outperforms State-of-the-Art (SotA) algorithms by overtaking opponents at up to 83.1% of its own speed, being on average 8.4% faster than the previous best-performing method. Additionally, it achieves an average success rate of 84.5%, which is 47.6% higher than the previous best-performing method. The method maintains computational efficiency with a Central Processing Unit (CPU) load of 22.79% and a computation time of 8.4 ms, evaluated on a Commercial off-the-Shelf (CotS) Intel i7-1165G7, making it suitable for real-time robotic applications. These results highlight the potential of Predictive Spliner to enhance the performance and safety of autonomous racing vehicles. The code for Predictive Spliner is available at: https://github.com/ForzaETH/predictive-spliner.
Abstract:Large language models (LLMs) have achieved remarkable advancements in natural language processing, showcasing exceptional performance across various tasks. However, the expensive memory and computational requirements present significant challenges for their practical deployment. Low-bit quantization has emerged as a critical approach to mitigate these challenges by reducing the bit-width of model parameters, activations, and gradients, thus decreasing memory usage and computational demands. This paper presents a comprehensive survey of low-bit quantization methods tailored for LLMs, covering the fundamental principles, system implementations, and algorithmic strategies. An overview of basic concepts and new data formats specific to low-bit LLMs is first introduced, followed by a review of frameworks and systems that facilitate low-bit LLMs across various hardware platforms. Then, we categorize and analyze techniques and toolkits for efficient low-bit training and inference of LLMs. Finally, we conclude with a discussion of future trends and potential advancements of low-bit LLMs. Our systematic overview from basic, system, and algorithm perspectives can offer valuable insights and guidelines for future works to enhance the efficiency and applicability of LLMs through low-bit quantization.
Abstract:Wind power generation plays a crucial role in transitioning away from fossil fuel-dependent energy sources, contributing significantly to the mitigation of climate change. Monitoring and evaluating the aerodynamics of large wind turbine rotors is crucial to enable more wind energy deployment. This is necessary to achieve the European climate goal of a reduction in net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. This paper presents a comparison between two measurement systems for evaluating the aerodynamic performance of wind turbine rotor blades on a full-scale wind tunnel test. One system uses an array of ten commercial compact ultra-low power micro-electromechanical systems (MEMS) pressure sensors placed on the blade surface, while the other employs high-accuracy lab-based pressure scanners embedded in the airfoil. The tests are conducted at a Reynolds number of 3.5 x 10^6, which represents typical operating conditions for wind turbines. MEMS sensors are of particular interest, as they can enable real-time monitoring which would be impossible with the ground truth system. This work provides an accurate quantification of the impact of the MEMS system on the blade aerodynamics and its measurement accuracy. Our results indicate that MEMS sensors, with a total sensing power below 1.6 mW, can measure key aerodynamic parameters like Angle of Attack (AoA) and flow separation with a precision of 1{\deg}. Although there are minor differences in measurements due to sensor encapsulation, the MEMS system does not significantly compromise blade aerodynamics, with a maximum shift in the angle of attack for flow separation of only 1{\deg}. These findings indicate that surface and low-power MEMS sensor systems are a promising approach for efficient and sustainable wind turbine monitoring using self-sustaining Internet of Things devices and wireless sensor networks.
Abstract:Sepsis is a significant cause of early mortality, high healthcare costs, and disability-adjusted life years. Digital interventions like continuous cardiac monitoring can help detect early warning signs and facilitate effective interventions. This paper introduces i-CardiAx, a wearable sensor utilizing low-power high-sensitivity accelerometers to measure vital signs crucial for cardiovascular health: heart rate (HR), blood pressure (BP), and respiratory rate (RR). Data collected from 10 healthy subjects using the i-CardiAx chest patch were used to develop and evaluate lightweight vital sign measurement algorithms. The algorithms demonstrated high performance: RR (-0.11 $\pm$ 0.77 breaths\min), HR (0.82 $\pm$ 2.85 beats\min), and systolic BP (-0.08 $\pm$ 6.245 mmHg). These algorithms are embedded in an ARM Cortex-M33 processor with Bluetooth Low Energy (BLE) support, achieving inference times of 4.2 ms for HR and RR, and 8.5 ms for BP. Additionally, a multi-channel quantized Temporal Convolutional Neural (TCN) Network, trained on the open-source HiRID dataset, was developed to detect sepsis onset using digitally acquired vital signs from i-CardiAx. The quantized TCN, deployed on i-CardiAx, predicted sepsis with a median time of 8.2 hours and an energy per inference of 1.29 mJ. The i-CardiAx wearable boasts a sleep power of 0.152 mW and an average power consumption of 0.77 mW, enabling a 100 mAh battery to last approximately two weeks (432 hours) with continuous monitoring of HR, BP, and RR at 30 measurements per hour and running inference every 30 minutes. In conclusion, i-CardiAx offers an energy-efficient, high-sensitivity method for long-term cardiovascular monitoring, providing predictive alerts for sepsis and other life-threatening events.
Abstract:Smart sensors are an emerging technology that allows combining the data acquisition with the elaboration directly on the Edge device, very close to the sensors. To push this concept to the extreme, technology companies are proposing a new generation of sensors allowing to move the intelligence from the edge host device, typically a microcontroller, directly to the ultra-low-power sensor itself, in order to further reduce the miniaturization, cost and energy efficiency. This paper evaluates the capabilities of a novel and promising solution from STMicroelectronics. The presence of a floating point unit and an accelerator for binary neural networks provide capabilities for in-sensor feature extraction and machine learning. We propose a comparison of full-precision and binary neural networks for activity recognition with accelerometer data generated by the sensor itself. Experimental results have demonstrated that the sensor can achieve an inference performance of 10.7 cycles/MAC, comparable to a Cortex-M4-based microcontroller, with full-precision networks, and up to 1.5 cycles/MAC with large binary models for low latency inference, with an average energy consumption of only 90 $\mu$J/inference with the core running at 5 MHz.
Abstract:Radio Frequency (RF) wireless power transfer is a promising technology that has the potential to constantly power small Internet of Things (IoT) devices, enabling even battery-less systems and reducing their maintenance requirements. However, to achieve this ambitious goal, carefully designed RF energy harvesting (EH) systems are needed to minimize the conversion losses and the conversion efficiency of the limited power. For intelligent internet of things sensors and devices, which often have non-constant power requirements, an additional power management stage with energy storage is needed to temporarily provide a higher power output than the power being harvested. This paper proposes an RF wireless power energy conversion system for miniaturized IoT composed of an impedance matching network, a rectifier, and power management with energy storage. The proposed sub-system has been experimentally validated and achieved an overall power conversion efficiency (PCE) of over 30 % for an input power of -10 dBm and a peak efficiency of 57 % at 3 dBm.
Abstract:Animal vocalisations serve a wide range of vital functions. Although it is possible to record animal vocalisations with external microphones, more insights are gained from miniature sensors mounted directly on animals' backs. We present TinyBird-ML; a wearable sensor node weighing only 1.4 g for acquiring, processing, and wirelessly transmitting acoustic signals to a host system using Bluetooth Low Energy. TinyBird-ML embeds low-latency tiny machine learning algorithms for song syllable classification. To optimize battery lifetime of TinyBird-ML during fault-tolerant continuous recordings, we present an efficient firmware and hardware design. We make use of standard lossy compression schemes to reduce the amount of data sent over the Bluetooth antenna, which increases battery lifetime by 70% without negative impact on offline sound analysis. Furthermore, by not transmitting signals during silent periods, we further increase battery lifetime. One advantage of our sensor is that it allows for closed-loop experiments in the microsecond range by processing sounds directly on the device instead of streaming them to a computer. We demonstrate this capability by detecting and classifying song syllables with minimal latency and a syllable error rate of 7%, using a light-weight neural network that runs directly on the sensor node itself. Thanks to our power-saving hardware and software design, during continuous operation at a sampling rate of 16 kHz, the sensor node achieves a lifetime of 25 hours on a single size 13 zinc-air battery.
Abstract:Spiking neural networks (SNNs), a brain-inspired computing paradigm, are emerging for their inference performance, particularly in terms of energy efficiency and latency attributed to the plasticity in signal processing. To deploy SNNs in ubiquitous computing systems, signal encoding of sensors is crucial for achieving high accuracy and robustness. Using inertial sensor readings for gym activity recognition as a case study, this work comprehensively evaluates four main encoding schemes and deploys the corresponding SNN on the neuromorphic processor Loihi2 for post-deployment encoding assessment. Rate encoding, time-to-first-spike encoding, binary encoding, and delta modulation are evaluated using metrics like average fire rate, signal-to-noise ratio, classification accuracy, robustness, and inference latency and energy. In this case study, the time-to-first-spike encoding required the lowest firing rate (2%) and achieved a comparative accuracy (89%), although it was the least robust scheme against error spikes (over 20% accuracy drop with 0.1 noisy spike rate). Rate encoding with optimal value-to-probability mapping achieved the highest accuracy (91.7%). Binary encoding provided a balance between information reconstruction and noise resistance. Multi-threshold delta modulation showed the best robustness, with only a 0.7% accuracy drop at a 0.1 noisy spike rate. This work serves researchers in selecting the best encoding scheme for SNN-based ubiquitous sensor signal processing, tailored to specific performance requirements.
Abstract:Step-counting has been widely implemented in wrist-worn devices and is accepted by end users as a quantitative indicator of everyday exercise. However, existing counting approach (mostly on wrist-worn setup) lacks robustness and thus introduces inaccuracy issues in certain scenarios like brief intermittent walking bouts and random arm motions or static arm status while walking (no clear correlation of motion pattern between arm and leg). This paper proposes a low-power step-counting solution utilizing the body area electric field acquired by a novel electrostatic sensing unit, consuming only 87.3 $\mu$W of power, hoping to strengthen the robustness of current dominant solution. We designed two wearable devices for on-the-wrist and in-the-ear deployment and collected body-area electric field-derived motion signals from ten volunteers. Four walking scenarios are considered: in the parking lot/shopping center with/without pushing the shopping trolley. The step-counting accuracy from the prototypes shows better accuracy than the commercial wrist-worn devices (e.g.,96% of the wrist- and ear-worn prototype vs. 66% of the Fitbit when walking in the shopping center while pushing a shopping trolley). We finally discussed the potential and limitations of sensing body-area electric fields for wrist-worn and ear-worn step-counting and beyond.
Abstract:A key requirement in robotics is the ability to simultaneously self-localize and map a previously unknown environment, relying primarily on onboard sensing and computation. Achieving fully onboard accurate simultaneous localization and mapping (SLAM) is feasible for high-end robotic platforms, whereas small and inexpensive robots face challenges due to constrained hardware, therefore frequently resorting to external infrastructure for sensing and computation. The challenge is further exacerbated in swarms of robots, where coordination, scalability, and latency are crucial concerns. This work introduces a decentralized and lightweight collaborative SLAM approach that enables mapping on virtually any robot, even those equipped with low-cost hardware, including miniaturized insect-size devices. Moreover, the proposed solution supports large swarm formations with the capability to coordinate hundreds of agents. To substantiate our claims, we have successfully implemented collaborative SLAM on centimeter-size drones weighing only 46 grams. Remarkably, we achieve results comparable to high-end state-of-the-art solutions while reducing the cost, memory, and computation requirements by two orders of magnitude. Our approach is innovative in three main aspects. First, it enables onboard infrastructure-less collaborative mapping with a lightweight and cost-effective solution in terms of sensing and computation. Second, we optimize the data traffic within the swarm to support hundreds of cooperative agents using standard wireless protocols such as ultra-wideband (UWB), Bluetooth, or WiFi. Last, we implement a distributed swarm coordination policy to decrease mapping latency and enhance accuracy.