Abstract:Autonomous racing presents unique challenges due to its non-linear dynamics, the high speed involved, and the critical need for real-time decision-making under dynamic and unpredictable conditions. Most traditional Reinforcement Learning (RL) approaches rely on extensive simulation-based pre-training, which faces crucial challenges in transfer effectively to real-world environments. This paper introduces a robust on-board RL framework for autonomous racing, designed to eliminate the dependency on simulation-based pre-training enabling direct real-world adaptation. The proposed system introduces a refined Soft Actor-Critic (SAC) algorithm, leveraging a residual RL structure to enhance classical controllers in real-time by integrating multi-step Temporal-Difference (TD) learning, an asynchronous training pipeline, and Heuristic Delayed Reward Adjustment (HDRA) to improve sample efficiency and training stability. The framework is validated through extensive experiments on the F1TENTH racing platform, where the residual RL controller consistently outperforms the baseline controllers and achieves up to an 11.5 % reduction in lap times compared to the State-of-the-Art (SotA) with only 20 min of training. Additionally, an End-to-End (E2E) RL controller trained without a baseline controller surpasses the previous best results with sustained on-track learning. These findings position the framework as a robust solution for high-performance autonomous racing and a promising direction for other real-time, dynamic autonomous systems.
Abstract:Head-to-head racing against opponents is a challenging and emerging topic in the domain of autonomous racing. We propose Predictive Spliner, a data-driven overtaking planner that learns the behavior of opponents through Gaussian Process (GP) regression, which is then leveraged to compute viable overtaking maneuvers in future sections of the racing track. Experimentally validated on a 1:10 scale autonomous racing platform using Light Detection and Ranging (LiDAR) information to perceive the opponent, Predictive Spliner outperforms State-of-the-Art (SotA) algorithms by overtaking opponents at up to 83.1% of its own speed, being on average 8.4% faster than the previous best-performing method. Additionally, it achieves an average success rate of 84.5%, which is 47.6% higher than the previous best-performing method. The method maintains computational efficiency with a Central Processing Unit (CPU) load of 22.79% and a computation time of 8.4 ms, evaluated on a Commercial off-the-Shelf (CotS) Intel i7-1165G7, making it suitable for real-time robotic applications. These results highlight the potential of Predictive Spliner to enhance the performance and safety of autonomous racing vehicles. The code for Predictive Spliner is available at: https://github.com/ForzaETH/predictive-spliner.