Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Deep Generative Models for Distribution-Preserving Lossy Compression


Oct 28, 2018
Michael Tschannen, Eirikur Agustsson, Mario Lucic

Add code

* NIPS 2018. Code: https://github.com/mitscha/dplc . Changes w.r.t. v1: Some clarifications in the text and additional numerical results 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Generative Adversarial Networks for Extreme Learned Image Compression


Oct 23, 2018
Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, Luc Van Gool

Add code

* EA, MT, and FM contributed equally. Project website: https://data.vision.ee.ethz.ch/aeirikur/extremecompression 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Born Again Neural Networks


Jun 29, 2018
Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, Anima Anandkumar

Add code

* Published @ICML 2018 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Noisy subspace clustering via matching pursuits


Jun 08, 2018
Michael Tschannen, Helmut Bölcskei

Add code

* IEEE Transactions on Information Theory, Vol. 64, No. 6, pp. 4081-4104, June 2018 
* 24 pages, 5 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

StrassenNets: Deep Learning with a Multiplication Budget


Jun 08, 2018
Michael Tschannen, Aran Khanna, Anima Anandkumar

Add code

* ICML 2018. Code available at https://github.com/mitscha/strassennets 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Conditional Probability Models for Deep Image Compression


Jun 04, 2018
Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, Luc Van Gool

Add code

* CVPR 2018. Code available at https://github.com/fab-jul/imgcomp-cvpr . The first two authors contributed equally 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Convolutional Recurrent Neural Networks for Electrocardiogram Classification


Apr 09, 2018
Martin Zihlmann, Dmytro Perekrestenko, Michael Tschannen

Add code

* 4 pages, in Computing in Cardiology (CinC) 2017, PhysioNet/CinC Challenge 2017 submission. Code available at https://github.com/yruffiner/ecg-classification 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards Image Understanding from Deep Compression without Decoding


Mar 16, 2018
Robert Torfason, Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, Luc Van Gool

Add code

* ICLR 2018 conference paper 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees


Nov 19, 2017
Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi

Add code

* NIPS 2017 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Robust nonparametric nearest neighbor random process clustering


Sep 28, 2017
Michael Tschannen, Helmut Bölcskei

Add code

* IEEE Transactions on Signal Processing, Vol. 65, No. 22, pp. 6009-6023, Nov. 2017 
* 15 pages, 7 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
<<
1
2
3
4
>>