Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
A Commentary on the Unsupervised Learning of Disentangled Representations

Jul 28, 2020
Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem

* The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020 (AAAI-20) 

  Access Paper or Ask Questions

Weakly-Supervised Disentanglement Without Compromises

Feb 07, 2020
Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen


  Access Paper or Ask Questions

Variational PSOM: Deep Probabilistic Clustering with Self-Organizing Maps

Oct 03, 2019
Laura Manduchi, Matthias Hüser, Gunnar Rätsch, Vincent Fortuin


  Access Paper or Ask Questions

Deep Multiple Instance Learning for Taxonomic Classification of Metagenomic read sets

Sep 28, 2019
Andreas Georgiou, Vincent Fortuin, Harun Mustafa, Gunnar Rätsch


  Access Paper or Ask Questions

Multivariate Time Series Imputation with Variational Autoencoders

Jul 12, 2019
Vincent Fortuin, Gunnar Rätsch, Stephan Mandt


  Access Paper or Ask Questions

Disentangling Factors of Variation Using Few Labels

May 03, 2019
Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem


  Access Paper or Ask Questions

Unsupervised Extraction of Phenotypes from Cancer Clinical Notes for Association Studies

May 03, 2019
Stefan G. Stark, Stephanie L. Hyland, Melanie F. Pradier, Kjong Lehmann, Andreas Wicki, Fernando Perez Cruz, Julia E. Vogt, Gunnar Rätsch


  Access Paper or Ask Questions

Machine learning for early prediction of circulatory failure in the intensive care unit

Apr 19, 2019
Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean Bodenham, Karsten Borgwardt, Gunnar Rätsch, Tobias M. Merz

* 5 main figures, 1 main table, 13 supplementary figures, 5 supplementary tables; 250ppi images 

  Access Paper or Ask Questions

Deep Mean Functions for Meta-Learning in Gaussian Processes

Jan 23, 2019
Vincent Fortuin, Gunnar Rätsch


  Access Paper or Ask Questions

Boosting Black Box Variational Inference

Nov 01, 2018
Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch


  Access Paper or Ask Questions

Scalable Gaussian Processes on Discrete Domains

Oct 24, 2018
Vincent Fortuin, Gideon Dresdner, Heiko Strathmann, Gunnar Rätsch


  Access Paper or Ask Questions

Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series

Oct 05, 2018
Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch


  Access Paper or Ask Questions

Clustering Meets Implicit Generative Models

Aug 02, 2018
Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf


  Access Paper or Ask Questions

On Matching Pursuit and Coordinate Descent

Jul 02, 2018
Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi

* ICML 2018 - Proceedings of the 35th International Conference on Machine Learning 

  Access Paper or Ask Questions

Boosting Variational Inference: an Optimization Perspective

Mar 07, 2018
Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch

* AISTATS 2018 

  Access Paper or Ask Questions

Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs

Dec 04, 2017
Cristóbal Esteban, Stephanie L. Hyland, Gunnar Rätsch

* 13 pages, 4 figures, 3 tables (update with differential privacy) 

  Access Paper or Ask Questions

Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Nov 19, 2017
Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi

* NIPS 2017 

  Access Paper or Ask Questions

Learning Unitary Operators with Help From u(n)

Jan 10, 2017
Stephanie L. Hyland, Gunnar Rätsch

* 9 pages, 3 figures, 5 figures inc. subfigures, to appear at AAAI-17 

  Access Paper or Ask Questions

Bayesian representation learning with oracle constraints

Mar 01, 2016
Theofanis Karaletsos, Serge Belongie, Gunnar Rätsch

* 16 pages, publishes in ICLR 16 

  Access Paper or Ask Questions

Knowledge Transfer with Medical Language Embeddings

Feb 10, 2016
Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch

* 6 pages, 2 figures, to appear at SDM-DMMH 2016 

  Access Paper or Ask Questions

A Generative Model of Words and Relationships from Multiple Sources

Dec 03, 2015
Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch

* 8 pages, 5 figures; incorporated feedback from reviewers; to appear in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 2016 

  Access Paper or Ask Questions

Automatic Relevance Determination For Deep Generative Models

Aug 26, 2015
Theofanis Karaletsos, Gunnar Rätsch

* equations 8-12 updated 

  Access Paper or Ask Questions

Framework for Multi-task Multiple Kernel Learning and Applications in Genome Analysis

Jun 30, 2015
Christian Widmer, Marius Kloft, Vipin T Sreedharan, Gunnar Rätsch


  Access Paper or Ask Questions

Probabilistic Clustering of Time-Evolving Distance Data

Apr 14, 2015
Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir S. Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch


  Access Paper or Ask Questions

GRED: Graph-Regularized 3D Shape Reconstruction from Highly Anisotropic and Noisy Images

Sep 17, 2013
Christian Widmer, Philipp Drewe, Xinghua Lou, Shefali Umrania, Stephanie Heinrich, Gunnar Rätsch


  Access Paper or Ask Questions