David
Abstract:Large foundation models (LFMs) are susceptible to two distinct vulnerabilities: hallucinations and jailbreak attacks. While typically studied in isolation, we observe that defenses targeting one often affect the other, hinting at a deeper connection. We propose a unified theoretical framework that models jailbreaks as token-level optimization and hallucinations as attention-level optimization. Within this framework, we establish two key propositions: (1) \textit{Similar Loss Convergence} - the loss functions for both vulnerabilities converge similarly when optimizing for target-specific outputs; and (2) \textit{Gradient Consistency in Attention Redistribution} - both exhibit consistent gradient behavior driven by shared attention dynamics. We validate these propositions empirically on LLaVA-1.5 and MiniGPT-4, showing consistent optimization trends and aligned gradients. Leveraging this connection, we demonstrate that mitigation techniques for hallucinations can reduce jailbreak success rates, and vice versa. Our findings reveal a shared failure mode in LFMs and suggest that robustness strategies should jointly address both vulnerabilities.
Abstract:Large Language Models (LLMs) have shown remarkable progress across domains, yet their ability to perform inductive reasoning - inferring latent rules from sparse examples - remains limited. It is often assumed that chain-of-thought (CoT) prompting, as used in Large Reasoning Models (LRMs), enhances such reasoning. We investigate this assumption with creating four controlled, diagnostic game-based tasks - chess, Texas Hold'em, dice games, and blackjack - with hidden human-defined rules. We find that CoT reasoning can degrade inductive performance, with LRMs often underperforming their non-reasoning counterparts. To explain this, we present a theoretical framework that reveals how reasoning steps can amplify error through three failure modes: incorrect sub-task decomposition, incorrect sub-task solving, and incorrect final answer summarization. Based on our theoretical and empirical analysis, we introduce structured interventions that adapt CoT generation according to our identified failure types. These interventions improve inductive accuracy without retraining. Our findings suggest that effective (CoT) reasoning depends not only on taking more steps but also on ensuring those steps are well-structured.
Abstract:Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews written by humans and different state-of-the-art LLMs. Motivated by the shortcomings of existing methods, we propose a new detection approach which surpasses existing methods in the identification of AI written peer reviews. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI.
Abstract:In this paper, we present the Global Multimedia Deepfake Detection held concurrently with the Inclusion 2024. Our Multimedia Deepfake Detection aims to detect automatic image and audio-video manipulations including but not limited to editing, synthesis, generation, Photoshop,etc. Our challenge has attracted 1500 teams from all over the world, with about 5000 valid result submission counts. We invite the top 20 teams to present their solutions to the challenge, from which the top 3 teams are awarded prizes in the grand finale. In this paper, we present the solutions from the top 3 teams of the two tracks, to boost the research work in the field of image and audio-video forgery detection. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection systems and we encourage participants to open source their methods.
Abstract:Large Vision Language Models (LVLMs) have achieved significant progress in integrating visual and textual inputs for multimodal reasoning. However, a recurring challenge is ensuring these models utilize visual information as effectively as linguistic content when both modalities are necessary to formulate an accurate answer. We hypothesize that hallucinations arise due to the lack of effective visual grounding in current LVLMs. This issue extends to vision-language benchmarks, where it is difficult to make the image indispensable for accurate answer generation, particularly in vision question-answering tasks. In this work, we introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding and to evaluate their effectiveness in achieving it. These datasets can be utilized for both training and assessing an LVLM's ability to use image content as substantive evidence rather than relying solely on linguistic priors, providing insights into the model's reliance on visual information. To demonstrate the utility of our dataset, we introduce an innovative training task that outperforms baselines alongside a validation method and application for explainability. The code is available at https://github.com/IntelLabs/fivl.
Abstract:Deep-learning based traffic prediction models require vast amounts of data to learn embedded spatial and temporal dependencies. The inherent privacy and commercial sensitivity of such data has encouraged a shift towards decentralised data-driven methods, such as Federated Learning (FL). Under a traditional Machine Learning paradigm, traffic flow prediction models can capture spatial and temporal relationships within centralised data. In reality, traffic data is likely distributed across separate data silos owned by multiple stakeholders. In this work, a cross-silo FL setting is motivated to facilitate stakeholder collaboration for optimal traffic flow prediction applications. This work introduces an FL framework, referred to as FedTPS, to generate synthetic data to augment each client's local dataset by training a diffusion-based trajectory generation model through FL. The proposed framework is evaluated on a large-scale real world ride-sharing dataset using various FL methods and Traffic Flow Prediction models, including a novel prediction model we introduce, which leverages Temporal and Graph Attention mechanisms to learn the Spatio-Temporal dependencies embedded within regional traffic flow data. Experimental results show that FedTPS outperforms multiple other FL baselines with respect to global model performance.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning. Existing automatic optimization methods, such as textual feedback-based techniques (e.g., TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent. However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. To overcome these challenges, more adaptive methods are needed, especially in situations where the system's response is evolving slowly or unpredictably. In this paper, we introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization. Additionally, REVOLVE converges in fewer iterations, resulting in significant computational savings. These advantages highlight its adaptability and efficiency, positioning REVOLVE as a valuable tool for optimizing LLM-based systems and accelerating the development of next-generation AI technologies. Code is available at: https://github.com/Peiyance/REVOLVE.
Abstract:Multimodal models typically combine a powerful large language model (LLM) with a vision encoder and are then trained on multimodal data via instruction tuning. While this process adapts LLMs to multimodal settings, it remains unclear whether this adaptation compromises their original language reasoning capabilities. In this work, we explore the effects of multimodal instruction tuning on language reasoning performance. We focus on LLaVA, a leading multimodal framework that integrates LLMs such as Vicuna or Mistral with the CLIP vision encoder. We compare the performance of the original LLMs with their multimodal-adapted counterparts across eight language reasoning tasks. Our experiments yield several key insights. First, the impact of multimodal learning varies between Vicuna and Mistral: we observe a degradation in language reasoning for Mistral but improvements for Vicuna across most tasks. Second, while multimodal instruction learning consistently degrades performance on mathematical reasoning tasks (e.g., GSM8K), it enhances performance on commonsense reasoning tasks (e.g., CommonsenseQA). Finally, we demonstrate that a training-free model merging technique can effectively mitigate the language reasoning degradation observed in multimodal-adapted Mistral and even improve performance on visual tasks.
Abstract:While Large Vision Language Models (LVLMs) have become masterly capable in reasoning over human prompts and visual inputs, they are still prone to producing responses that contain misinformation. Identifying incorrect responses that are not grounded in evidence has become a crucial task in building trustworthy AI. Explainability methods such as gradient-based relevancy maps on LVLM outputs can provide an insight on the decision process of models, however these methods are often computationally expensive and not suited for on-the-fly validation of outputs. In this work, we propose FastRM, an effective way for predicting the explainable Relevancy Maps of LVLM models. Experimental results show that employing FastRM leads to a 99.8% reduction in compute time for relevancy map generation and an 44.4% reduction in memory footprint for the evaluated LVLM, making explainable AI more efficient and practical, thereby facilitating its deployment in real-world applications.
Abstract:Knowledge graphs (KGs) generated by large language models (LLMs) are becoming increasingly valuable for Retrieval-Augmented Generation (RAG) applications that require knowledge-intensive reasoning. However, existing KG extraction methods predominantly rely on prompt-based approaches, which are inefficient for processing large-scale corpora. These approaches often suffer from information loss, particularly with long documents, due to the lack of specialized design for KG construction. Additionally, there is a gap in evaluation datasets and methodologies for ontology-free KG construction. To overcome these limitations, we propose SynthKG, a multi-step, document-level ontology-free KG synthesis workflow based on LLMs. By fine-tuning a smaller LLM on the synthesized document-KG pairs, we streamline the multi-step process into a single-step KG generation approach called Distill-SynthKG, substantially reducing the number of LLM inference calls. Furthermore, we re-purpose existing question-answering datasets to establish KG evaluation datasets and introduce new evaluation metrics. Using KGs produced by Distill-SynthKG, we also design a novel graph-based retrieval framework for RAG. Experimental results demonstrate that Distill-SynthKG not only surpasses all baseline models in KG quality -- including models up to eight times larger -- but also consistently excels in retrieval and question-answering tasks. Our proposed graph retrieval framework also outperforms all KG-retrieval methods across multiple benchmark datasets. We release the SynthKG dataset and Distill-SynthKG model publicly to support further research and development.