Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Subgraph Frequency Distribution Estimation using Graph Neural Networks


Jul 14, 2022
Zhongren Chen, Xinyue Xu, Shengyi Jiang, Hao Wang, Lu Mi

* accepted by KDD 2022 Workshop on Deep Learning on Graphs 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Revisiting Latent-Space Interpolation via a Quantitative Evaluation Framework


Oct 13, 2021
Lu Mi, Tianxing He, Core Francisco Park, Hao Wang, Yue Wang, Nir Shavit

* 11 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps


Jun 28, 2021
Lu Mi, Hang Zhao, Charlie Nash, Xiaohan Jin, Jiyang Gao, Chen Sun, Cordelia Schmid, Nir Shavit, Yuning Chai, Dragomir Anguelov


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Guided Electron Microscopy with Active Acquisition


Jan 07, 2021
Lu Mi, Hao Wang, Yaron Meirovitch, Richard Schalek, Srinivas C. Turaga, Jeff W. Lichtman, Aravinthan D. T. Samuel, Nir Shavit

* MICCAI 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Training-Free Uncertainty Estimation for Neural Networks


Sep 28, 2019
Lu Mi, Hao Wang, Yonglong Tian, Nir Shavit

* 15 pages, 10 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Probe Towards Understanding GAN and VAE Models


Dec 17, 2018
Lu Mi, Macheng Shen, Jingzhao Zhang

* 9 pages, 8 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Cross-Classification Clustering: An Efficient Multi-Object Tracking Technique for 3-D Instance Segmentation in Connectomics


Dec 04, 2018
Yaron Meirovitch, Lu Mi, Hayk Saribekyan, Alexander Matveev, David Rolnick, Casimir Wierzynski, Nir Shavit

* 10 pages, 10 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email