Abstract:To process contexts with unlimited length using Large Language Models (LLMs), recent studies explore hierarchically managing the long text. Only several text fragments are taken from the external memory and passed into the temporary working memory, i.e., LLM's context window. However, existing approaches isolatedly handle the text fragments without considering their structural connections, thereby suffering limited capability on texts with intensive inter-relations, e.g., coherent stories and code repositories. This work attempts to resolve this by exploiting the fragment-level relations in external memory. First, we formulate the fragment-level relations and present several instantiations for different text types. Next, we introduce a relation-aware fragment assessment criteria upon previous independent fragment assessment. Finally, we present the fragment-connected Hierarchical Memory based LLM. We validate the benefits of involving these relations on long story understanding, repository-level code generation, and long-term chatting.
Abstract:Maintaining temporal stability is crucial in multi-agent trajectory prediction. Insufficient regularization to uphold this stability often results in fluctuations in kinematic states, leading to inconsistent predictions and the amplification of errors. In this study, we introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE). This framework assesses the interactive motion of agents by employing neural interaction energy, which captures the dynamics of interactions and illustrates their influence on the future trajectories of agents. To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint. These constraints work together to ensure temporal stability at both the system and agent levels, effectively mitigating prediction fluctuations inherent in multi-agent systems. Comparative evaluations against previous methods on four diverse datasets highlight the superior prediction accuracy and generalization capabilities of our model.
Abstract:Audio-driven visual scene editing endeavors to manipulate the visual background while leaving the foreground content unchanged, according to the given audio signals. Unlike current efforts focusing primarily on image editing, audio-driven video scene editing has not been extensively addressed. In this paper, we introduce AudioScenic, an audio-driven framework designed for video scene editing. AudioScenic integrates audio semantics into the visual scene through a temporal-aware audio semantic injection process. As our focus is on background editing, we further introduce a SceneMasker module, which maintains the integrity of the foreground content during the editing process. AudioScenic exploits the inherent properties of audio, namely, audio magnitude and frequency, to guide the editing process, aiming to control the temporal dynamics and enhance the temporal consistency. First, we present an audio Magnitude Modulator module that adjusts the temporal dynamics of the scene in response to changes in audio magnitude, enhancing the visual dynamics. Second, the audio Frequency Fuser module is designed to ensure temporal consistency by aligning the frequency of the audio with the dynamics of the video scenes, thus improving the overall temporal coherence of the edited videos. These integrated features enable AudioScenic to not only enhance visual diversity but also maintain temporal consistency throughout the video. We present a new metric named temporal score for more comprehensive validation of temporal consistency. We demonstrate substantial advancements of AudioScenic over competing methods on DAVIS and Audioset datasets.
Abstract:The rapidly developing Large Vision Language Models (LVLMs) have shown notable capabilities on a range of multi-modal tasks, but still face the hallucination phenomena where the generated texts do not align with the given contexts, significantly restricting the usages of LVLMs. Most previous work detects and mitigates hallucination at the coarse-grained level or requires expensive annotation (e.g., labeling by proprietary models or human experts). To address these issues, we propose detecting and mitigating hallucinations in LVLMs via fine-grained AI feedback. The basic idea is that we generate a small-size sentence-level hallucination annotation dataset by proprietary models, whereby we train a hallucination detection model which can perform sentence-level hallucination detection, covering primary hallucination types (i.e., object, attribute, and relationship). Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model. Furthermore, we propose differentiating the severity of hallucinations, and introducing a Hallucination Severity-Aware Direct Preference Optimization (HSA-DPO) for mitigating hallucination in LVLMs by incorporating the severity of hallucinations into preference learning. Extensive experiments demonstrate the effectiveness of our method.
Abstract:Current diffusion-based video editing primarily focuses on local editing (\textit{e.g.,} object/background editing) or global style editing by utilizing various dense correspondences. However, these methods often fail to accurately edit the foreground and background simultaneously while preserving the original layout. We find that the crux of the issue stems from the imprecise distribution of attention weights across designated regions, including inaccurate text-to-attribute control and attention leakage. To tackle this issue, we introduce EVA, a \textbf{zero-shot} and \textbf{multi-attribute} video editing framework tailored for human-centric videos with complex motions. We incorporate a Spatial-Temporal Layout-Guided Attention mechanism that leverages the intrinsic positive and negative correspondences of cross-frame diffusion features. To avoid attention leakage, we utilize these correspondences to boost the attention scores of tokens within the same attribute across all video frames while limiting interactions between tokens of different attributes in the self-attention layer. For precise text-to-attribute manipulation, we use discrete text embeddings focused on specific layout areas within the cross-attention layer. Benefiting from the precise attention weight distribution, EVA can be easily generalized to multi-object editing scenarios and achieves accurate identity mapping. Extensive experiments demonstrate EVA achieves state-of-the-art results in real-world scenarios. Full results are provided at https://knightyxp.github.io/EVA/
Abstract:We study the zero-shot Composed Image Retrieval (ZS-CIR) task, which is to retrieve the target image given a reference image and a description without training on the triplet datasets. Previous works generate pseudo-word tokens by projecting the reference image features to the text embedding space. However, they focus on the global visual representation, ignoring the representation of detailed attributes, e.g., color, object number and layout. To address this challenge, we propose a Knowledge-Enhanced Dual-stream zero-shot composed image retrieval framework (KEDs). KEDs implicitly models the attributes of the reference images by incorporating a database. The database enriches the pseudo-word tokens by providing relevant images and captions, emphasizing shared attribute information in various aspects. In this way, KEDs recognizes the reference image from diverse perspectives. Moreover, KEDs adopts an extra stream that aligns pseudo-word tokens with textual concepts, leveraging pseudo-triplets mined from image-text pairs. The pseudo-word tokens generated in this stream are explicitly aligned with fine-grained semantics in the text embedding space. Extensive experiments on widely used benchmarks, i.e. ImageNet-R, COCO object, Fashion-IQ and CIRR, show that KEDs outperforms previous zero-shot composed image retrieval methods.
Abstract:Web user data plays a central role in the ecosystem of pre-trained large language models (LLMs) and their fine-tuned variants. Billions of data are crawled from the web and fed to LLMs. How can \textit{\textbf{everyday web users}} confirm if LLMs misuse their data without permission? In this work, we suggest that users repeatedly insert personal passphrases into their documents, enabling LLMs to memorize them. These concealed passphrases in user documents, referred to as \textit{ghost sentences}, once they are identified in the generated content of LLMs, users can be sure that their data is used for training. To explore the effectiveness and usage of this copyrighting tool, we define the \textit{user training data identification} task with ghost sentences. Multiple datasets from various sources at different scales are created and tested with LLMs of different sizes. For evaluation, we introduce a last $k$ words verification manner along with two metrics: document and user identification accuracy. In the specific case of instruction tuning of a 3B LLaMA model, 11 out of 16 users with ghost sentences identify their data within the generation content. These 16 users contribute 383 examples to $\sim$1.8M training documents. For continuing pre-training of a 1.1B TinyLlama model, 61 out of 64 users with ghost sentences identify their data within the LLM output. These 64 users contribute 1156 examples to $\sim$10M training documents.
Abstract:We concentrate on a novel human-centric image synthesis task, that is, given only one reference facial photograph, it is expected to generate specific individual images with diverse head positions, poses, and facial expressions in different contexts. To accomplish this goal, we argue that our generative model should be capable of the following favorable characteristics: (1) a strong visual and semantic understanding of our world and human society for basic object and human image generation. (2) generalizable identity preservation ability. (3) flexible and fine-grained head control. Recently, large pre-trained text-to-image diffusion models have shown remarkable results, serving as a powerful generative foundation. As a basis, we aim to unleash the above two capabilities of the pre-trained model. In this work, we present a new framework named CapHuman. We embrace the ``encode then learn to align" paradigm, which enables generalizable identity preservation for new individuals without cumbersome tuning at inference. CapHuman encodes identity features and then learns to align them into the latent space. Moreover, we introduce the 3D facial prior to equip our model with control over the human head in a flexible and 3D-consistent manner. Extensive qualitative and quantitative analyses demonstrate our CapHuman can produce well-identity-preserved, photo-realistic, and high-fidelity portraits with content-rich representations and various head renditions, superior to established baselines. Code and checkpoint will be released at https://github.com/VamosC/CapHuman.
Abstract:Text-video retrieval is a critical multi-modal task to find the most relevant video for a text query. Although pretrained models like CLIP have demonstrated impressive potential in this area, the rising cost of fully finetuning these models due to increasing model size continues to pose a problem. To address this challenge, prompt tuning has emerged as an alternative. However, existing works still face two problems when adapting pretrained image-text models to downstream video-text tasks: (1) The visual encoder could only encode frame-level features and failed to extract global-level general video information. (2) Equipping the visual and text encoder with separated prompts failed to mitigate the visual-text modality gap. To this end, we propose DGL, a cross-modal Dynamic prompt tuning method with Global-Local video attention. In contrast to previous prompt tuning methods, we employ the shared latent space to generate local-level text and frame prompts that encourage inter-modal interaction. Furthermore, we propose modeling video in a global-local attention mechanism to capture global video information from the perspective of prompt tuning. Extensive experiments reveal that when only 0.67% parameters are tuned, our cross-modal prompt tuning strategy DGL outperforms or is comparable to fully finetuning methods on MSR-VTT, VATEX, LSMDC, and ActivityNet datasets. Code will be available at https://github.com/knightyxp/DGL
Abstract:While Large Language Models (LLMs) based agents have successfully mimicked human behaviors in various scenarios, the realm of complex, multi-character social interactions within extended contexts remains underexplored. The challenge is compounded by privacy concerns, making it difficult to capture and utilize intricate real-life interactions. More importantly, the absence of quantitative evaluation methods hampers the pursuit of high-quality agent interactions, often leading to interactions that are limited in informativeness and expressiveness, characterized by superficial small talk without clear intentions. In this work, we leverage the rules of Tabletop Role-Playing Games (TRPG) to create an environment conducive to complex, context-rich interactions, emphasizing informativeness and expressiveness. This virtual setting alleviates privacy concerns and motivates agents to engage in meaningful, high-quality interactions as part of their in-game objectives. To assess these interactions, we introduce the Agent interaction Evaluation framework (AntEval), targeting the qualitative evaluation of interaction informativeness and expressiveness. Specifically, we propose two novel evaluation metrics: Information Exchanging Precision (IEP) and Interaction Expressiveness Gap (IEG). These metrics are designed to assess interactions in scenarios focused on information exchange and intention expression, respectively. Our experimental results demonstrate the effectiveness of these metrics in evaluating interaction quality. Notably, we identify significant areas for improvement in LLMs regarding social interactions, as highlighted by our metrics. We believe AntEval will guide further exploration in complex agent interactions, bringing them closer to emulating real human behavior and enhancing their integration and utility in real-world applications.