Abstract:Existing video editing methods face a critical trade-off: expert models offer precision but rely on task-specific priors like masks, hindering unification; conversely, unified temporal in-context learning models are mask-free but lack explicit spatial cues, leading to weak instruction-to-region mapping and imprecise localization. To resolve this conflict, we propose VideoCoF, a novel Chain-of-Frames approach inspired by Chain-of-Thought reasoning. VideoCoF enforces a ``see, reason, then edit" procedure by compelling the video diffusion model to first predict reasoning tokens (edit-region latents) before generating the target video tokens. This explicit reasoning step removes the need for user-provided masks while achieving precise instruction-to-region alignment and fine-grained video editing. Furthermore, we introduce a RoPE alignment strategy that leverages these reasoning tokens to ensure motion alignment and enable length extrapolation beyond the training duration. We demonstrate that with a minimal data cost of only 50k video pairs, VideoCoF achieves state-of-the-art performance on VideoCoF-Bench, validating the efficiency and effectiveness of our approach. Our code, weight, data are available at https://github.com/knightyxp/VideoCoF.




Abstract:Recent advancements in diffusion models have significantly improved video generation and editing capabilities. However, multi-grained video editing, which encompasses class-level, instance-level, and part-level modifications, remains a formidable challenge. The major difficulties in multi-grained editing include semantic misalignment of text-to-region control and feature coupling within the diffusion model. To address these difficulties, we present VideoGrain, a zero-shot approach that modulates space-time (cross- and self-) attention mechanisms to achieve fine-grained control over video content. We enhance text-to-region control by amplifying each local prompt's attention to its corresponding spatial-disentangled region while minimizing interactions with irrelevant areas in cross-attention. Additionally, we improve feature separation by increasing intra-region awareness and reducing inter-region interference in self-attention. Extensive experiments demonstrate our method achieves state-of-the-art performance in real-world scenarios. Our code, data, and demos are available at https://knightyxp.github.io/VideoGrain_project_page/
Abstract:Current diffusion-based video editing primarily focuses on local editing (\textit{e.g.,} object/background editing) or global style editing by utilizing various dense correspondences. However, these methods often fail to accurately edit the foreground and background simultaneously while preserving the original layout. We find that the crux of the issue stems from the imprecise distribution of attention weights across designated regions, including inaccurate text-to-attribute control and attention leakage. To tackle this issue, we introduce EVA, a \textbf{zero-shot} and \textbf{multi-attribute} video editing framework tailored for human-centric videos with complex motions. We incorporate a Spatial-Temporal Layout-Guided Attention mechanism that leverages the intrinsic positive and negative correspondences of cross-frame diffusion features. To avoid attention leakage, we utilize these correspondences to boost the attention scores of tokens within the same attribute across all video frames while limiting interactions between tokens of different attributes in the self-attention layer. For precise text-to-attribute manipulation, we use discrete text embeddings focused on specific layout areas within the cross-attention layer. Benefiting from the precise attention weight distribution, EVA can be easily generalized to multi-object editing scenarios and achieves accurate identity mapping. Extensive experiments demonstrate EVA achieves state-of-the-art results in real-world scenarios. Full results are provided at https://knightyxp.github.io/EVA/
Abstract:Text-video retrieval is a critical multi-modal task to find the most relevant video for a text query. Although pretrained models like CLIP have demonstrated impressive potential in this area, the rising cost of fully finetuning these models due to increasing model size continues to pose a problem. To address this challenge, prompt tuning has emerged as an alternative. However, existing works still face two problems when adapting pretrained image-text models to downstream video-text tasks: (1) The visual encoder could only encode frame-level features and failed to extract global-level general video information. (2) Equipping the visual and text encoder with separated prompts failed to mitigate the visual-text modality gap. To this end, we propose DGL, a cross-modal Dynamic prompt tuning method with Global-Local video attention. In contrast to previous prompt tuning methods, we employ the shared latent space to generate local-level text and frame prompts that encourage inter-modal interaction. Furthermore, we propose modeling video in a global-local attention mechanism to capture global video information from the perspective of prompt tuning. Extensive experiments reveal that when only 0.67% parameters are tuned, our cross-modal prompt tuning strategy DGL outperforms or is comparable to fully finetuning methods on MSR-VTT, VATEX, LSMDC, and ActivityNet datasets. Code will be available at https://github.com/knightyxp/DGL