Abstract:In the realm of robotic grasping, achieving accurate and reliable interactions with the environment is a pivotal challenge. Traditional methods of grasp planning methods utilizing partial point clouds derived from depth image often suffer from reduced scene understanding due to occlusion, ultimately impeding their grasping accuracy. Furthermore, scene reconstruction methods have primarily relied upon static techniques, which are susceptible to environment change during manipulation process limits their efficacy in real-time grasping tasks. To address these limitations, this paper introduces a novel two-stage pipeline for dynamic scene reconstruction. In the first stage, our approach takes scene scanning as input to register each target object with mesh reconstruction and novel object pose tracking. In the second stage, pose tracking is still performed to provide object poses in real-time, enabling our approach to transform the reconstructed object point clouds back into the scene. Unlike conventional methodologies, which rely on static scene snapshots, our method continuously captures the evolving scene geometry, resulting in a comprehensive and up-to-date point cloud representation. By circumventing the constraints posed by occlusion, our method enhances the overall grasp planning process and empowers state-of-the-art 6-DoF robotic grasping algorithms to exhibit markedly improved accuracy.
Abstract:The majority of automatic metrics for evaluating NLG systems are reference-based. However, the challenge of collecting human annotation results in a lack of reliable references in numerous application scenarios. Despite recent advancements in reference-free metrics, it has not been well understood when and where they can be used as an alternative to reference-based metrics. In this study, by employing diverse analytical approaches, we comprehensively assess the performance of both metrics across a wide range of NLG tasks, encompassing eight datasets and eight evaluation models. Based on solid experiments, the results show that reference-free metrics exhibit a higher correlation with human judgment and greater sensitivity to deficiencies in language quality. However, their effectiveness varies across tasks and is influenced by the quality of candidate texts. Therefore, it's important to assess the performance of reference-free metrics before applying them to a new task, especially when inputs are in uncommon form or when the answer space is highly variable. Our study can provide insight into the appropriate application of automatic metrics and the impact of metric choice on evaluation performance.
Abstract:This paper tackles the challenges of self-supervised monocular depth estimation in indoor scenes caused by large rotation between frames and low texture. We ease the learning process by obtaining coarse camera poses from monocular sequences through multi-view geometry to deal with the former. However, we found that limited by the scale ambiguity across different scenes in the training dataset, a na\"ive introduction of geometric coarse poses cannot play a positive role in performance improvement, which is counter-intuitive. To address this problem, we propose to refine those poses during training through rotation and translation/scale optimization. To soften the effect of the low texture, we combine the global reasoning of vision transformers with an overfitting-aware, iterative self-distillation mechanism, providing more accurate depth guidance coming from the network itself. Experiments on NYUv2, ScanNet, 7scenes, and KITTI datasets support the effectiveness of each component in our framework, which sets a new state-of-the-art for indoor self-supervised monocular depth estimation, as well as outstanding generalization ability. Code and models are available at https://github.com/zxcqlf/GasMono
Abstract:Category-level object pose estimation involves estimating the 6D pose and the 3D metric size of objects from predetermined categories. While recent approaches take categorical shape prior information as reference to improve pose estimation accuracy, the single-stage network design and training manner lead to sub-optimal performance since there are two distinct tasks in the pipeline. In this paper, the advantage of two-stage pipeline over single-stage design is discussed. To this end, we propose a two-stage deformation-and registration pipeline called DR-Pose, which consists of completion-aided deformation stage and scaled registration stage. The first stage uses a point cloud completion method to generate unseen parts of target object, guiding subsequent deformation on the shape prior. In the second stage, a novel registration network is designed to extract pose-sensitive features and predict the representation of object partial point cloud in canonical space based on the deformation results from the first stage. DR-Pose produces superior results to the state-of-the-art shape prior-based methods on both CAMERA25 and REAL275 benchmarks. Codes are available at https://github.com/Zray26/DR-Pose.git.
Abstract:Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario, where a detection model is required to be capable of detecting both known and unknown objects and incrementally learning newly introduced knowledge. Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns, whose performance relies heavily on the supervision of known objects. While they can detect the unknowns that exhibit similar features to the known objects, they suffer from a severe label bias problem that they tend to detect all regions (including unknown object regions) that are dissimilar to the known objects as part of the background. To eliminate the label bias, this paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects from raw pseudo labels generated by unsupervised region proposal methods. The resulting model can be further refined by a classification-free self-training method which iteratively extends pseudo unknown objects to the unlabeled regions. Experimental results show that our method 1) significantly outperforms the prior SOTA in detecting unknown objects while maintaining competitive performance of detecting known object classes on the MS COCO dataset, and 2) achieves better generalization ability on the LVIS and Objects365 datasets.
Abstract:Temporal knowledge graphs, representing the dynamic relationships and interactions between entities over time, have been identified as a promising approach for event forecasting. However, a limitation of most temporal knowledge graph reasoning methods is their heavy reliance on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current state of affairs is often the result of a combination of historical information and underlying factors that are not directly observable. To this end, we investigate the limits of historical information for temporal knowledge graph extrapolation and propose a new event forecasting model called Contrastive Event Network (CENET) based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that best match the given query. Simultaneously, by launching contrastive learning, it trains representations of queries to probe whether the current moment is more dependent on historical or non-historical events. These representations further help train a binary classifier, whose output is a boolean mask, indicating the related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least 8.3% relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.
Abstract:Zero-Shot Learning (ZSL) focuses on classifying samples of unseen classes with only their side semantic information presented during training. It cannot handle real-life, open-world scenarios where there are test samples of unknown classes for which neither samples (e.g., images) nor their side semantic information is known during training. Open-Set Recognition (OSR) is dedicated to addressing the unknown class issue, but existing OSR methods are not designed to model the semantic information of the unseen classes. To tackle this combined ZSL and OSR problem, we consider the case of "Zero-Shot Open-Set Recognition" (ZS-OSR), where a model is trained under the ZSL setting but it is required to accurately classify samples from the unseen classes while being able to reject samples from the unknown classes during inference. We perform large experiments on combining existing state-of-the-art ZSL and OSR models for the ZS-OSR task on four widely used datasets adapted from the ZSL task, and reveal that ZS-OSR is a non-trivial task as the simply combined solutions perform badly in distinguishing the unseen-class and unknown-class samples. We further introduce a novel approach specifically designed for ZS-OSR, in which our model learns to generate adversarial semantic embeddings of the unknown classes to train an unknowns-informed ZS-OSR classifier. Extensive empirical results show that our method 1) substantially outperforms the combined solutions in detecting the unknown classes while retaining the classification accuracy on the unseen classes and 2) achieves similar superiority under generalized ZS-OSR settings.
Abstract:Can we use sparse tokens for dense prediction, e.g., segmentation? Although token sparsification has been applied to Vision Transformers (ViT) to accelerate classification, it is still unknown how to perform segmentation from sparse tokens. To this end, we reformulate segmentation as a sparse encoding -> token completion -> dense decoding (SCD) pipeline. We first empirically show that naively applying existing approaches from classification token pruning and masked image modeling (MIM) leads to failure and inefficient training caused by inappropriate sampling algorithms and the low quality of the restored dense features. In this paper, we propose Soft-topK Token Pruning (STP) and Multi-layer Token Assembly (MTA) to address these problems. In sparse encoding, STP predicts token importance scores with a lightweight sub-network and samples the topK tokens. The intractable topK gradients are approximated through a continuous perturbed score distribution. In token completion, MTA restores a full token sequence by assembling both sparse output tokens and pruned multi-layer intermediate ones. The last dense decoding stage is compatible with existing segmentation decoders, e.g., UNETR. Experiments show SCD pipelines equipped with STP and MTA are much faster than baselines without token pruning in both training (up to 120% higher throughput and inference up to 60.6% higher throughput) while maintaining segmentation quality.
Abstract:Bokeh rendering is a popular and effective technique used in photography to create an aesthetically pleasing effect. It is widely used to blur the background and highlight the subject in the foreground, thereby drawing the viewer's attention to the main focus of the image. In traditional digital single-lens reflex cameras (DSLRs), this effect is achieved through the use of a large aperture lens. This allows the camera to capture images with shallow depth-of-field, in which only a small area of the image is in sharp focus, while the rest of the image is blurred. However, the hardware embedded in mobile phones is typically much smaller and more limited than that found in DSLRs. Consequently, mobile phones are not able to capture natural shallow depth-of-field photos, which can be a significant limitation for mobile photography. To address this challenge, in this paper, we propose a novel method for bokeh rendering using the Vision Transformer, a recent and powerful deep learning architecture. Our approach employs an adaptive depth calibration network that acts as a confidence level to compensate for errors in monocular depth estimation. This network is used to supervise the rendering process in conjunction with depth information, allowing for the generation of high-quality bokeh images at high resolutions. Our experiments demonstrate that our proposed method outperforms state-of-the-art methods, achieving about 24.7% improvements on LPIPS and obtaining higher PSNR scores.
Abstract:Image captioning models require the high-level generalization ability to describe the contents of various images in words. Most existing approaches treat the image-caption pairs equally in their training without considering the differences in their learning difficulties. Several image captioning approaches introduce curriculum learning methods that present training data with increasing levels of difficulty. However, their difficulty measurements are either based on domain-specific features or prior model training. In this paper, we propose a simple yet efficient difficulty measurement for image captioning using cross-modal similarity calculated by a pretrained vision-language model. Experiments on the COCO and Flickr30k datasets show that our proposed approach achieves superior performance and competitive convergence speed to baselines without requiring heuristics or incurring additional training costs. Moreover, the higher model performance on difficult examples and unseen data also demonstrates the generalization ability.