


Abstract:Approximate message passing (AMP) algorithms are iterative methods for signal recovery in noisy linear systems. In some scenarios, AMP algorithms need to operate within a distributed network. To address this challenge, the distributed extensions of AMP (D-AMP, FD-AMP) and orthogonal/vector AMP (D-OAMP/D-VAMP) were proposed, but they still inherit the limitations of centralized algorithms. In this letter, we propose distributed memory AMP (D-MAMP) to overcome the IID matrix limitation of D-AMP/FD-AMP, as well as the high complexity and heavy communication cost of D-OAMP/D-VAMP. We introduce a matrix-by-vector variant of MAMP tailored for distributed computing. Leveraging this variant, D-MAMP enables each node to execute computations utilizing locally available observation vectors and transform matrices. Meanwhile, global summations of locally updated results are conducted through message interaction among nodes. For acyclic graphs, D-MAMP converges to the same mean square error performance as the centralized MAMP.




Abstract:Rapid and accurate diagnosis of pneumothorax, utilizing chest X-ray and computed tomography (CT), is crucial for assisted diagnosis. Chest X-ray is commonly used for initial localization of pneumothorax, while CT ensures accurate quantification. However, CT scans involve high radiation doses and can be costly. To achieve precise quantitative diagnosis while minimizing radiation exposure, we proposed X-Recon, a CT ultra-sparse reconstruction network based on ortho-lateral chest X-ray images. X-Recon integrates generative adversarial networks (GANs), including a generator with a multi-scale fusion rendering module and a discriminator enhanced by 3D coordinate convolutional layers, designed to facilitate CT reconstruction. To improve precision, a projective spatial transformer is utilized to incorporate multi-angle projection loss. Additionally, we proposed PTX-Seg, a zero-shot pneumothorax segmentation algorithm, combining image processing techniques with deep-learning models for the segmentation of air-accumulated regions and lung structures. Experiments on a large-scale dataset demonstrate its superiority over existing approaches. X-Recon achieved a significantly higher reconstruction resolution with a higher average spatial resolution and a lower average slice thickness. The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio. The zero-shot segmentation algorithm, PTX-Seg, also demonstrated high segmentation precision for the air-accumulated region, the left lung, and the right lung. Moreover, the consistency analysis for the pneumothorax chest occupancy ratio between reconstructed CT and original CT obtained a high correlation coefficient. Code will be available at: https://github.com/wangyunpengbio/X-Recon
Abstract:Low-complexity Bayes-optimal memory approximate message passing (MAMP) is an efficient signal estimation algorithm in compressed sensing and multicarrier modulation. However, achieving replica Bayes optimality with MAMP necessitates a large-scale right-unitarily invariant transformation, which is prohibitive in practical systems due to its high computational complexity and hardware costs. To solve this difficulty, this letter proposes a low-complexity interleaved block-sparse (IBS) transform, which consists of interleaved multiple low-dimensional transform matrices, aimed at reducing the hardware implementation scale while mitigating performance loss. Furthermore, an IBS cross-domain memory approximate message passing (IBS-CD-MAMP) estimator is developed, comprising a memory linear estimator in the IBS transform domain and a non-linear estimator in the source domain. Numerical results show that the IBS-CD-MAMP offers a reduced implementation scale and lower complexity with excellent performance in IBS-based compressed sensing and interleave frequency division multiplexing systems.




Abstract:Large language models (LLMs), such as GPT series models, have received substantial attention due to their impressive capabilities for generating and understanding human-level language. More recently, LLMs have emerged as an innovative and powerful adjunct in the medical field, transforming traditional practices and heralding a new era of enhanced healthcare services. This survey provides a comprehensive overview of Medical Large Language Models (Med-LLMs), outlining their evolution from general to the medical-specific domain (i.e, Technology and Application), as well as their transformative impact on healthcare (e.g., Trustworthiness and Safety). Concretely, starting from the fundamental history and technology of LLMs, we first delve into the progressive adaptation and refinements of general LLM models in the medical domain, especially emphasizing the advanced algorithms that boost the LLMs' performance in handling complicated medical environments, including clinical reasoning, knowledge graph, retrieval-augmented generation, human alignment, and multi-modal learning. Secondly, we explore the extensive applications of Med-LLMs across domains such as clinical decision support, report generation, and medical education, illustrating their potential to streamline healthcare services and augment patient outcomes. Finally, recognizing the imperative and responsible innovation, we discuss the challenges of ensuring fairness, accountability, privacy, and robustness in Med-LLMs applications. Finally, we conduct a concise discussion for anticipating possible future trajectories of Med-LLMs, identifying avenues for the prudent expansion of Med-LLMs. By consolidating above-mentioned insights, this review seeks to provide a comprehensive investigation of the potential strengths and limitations of Med-LLMs for professionals and researchers, ensuring a responsible landscape in the healthcare setting.




Abstract:Point cloud compression has garnered significant interest in computer vision. However, existing algorithms primarily cater to human vision, while most point cloud data is utilized for machine vision tasks. To address this, we propose a point cloud compression framework that simultaneously handles both human and machine vision tasks. Our framework learns a scalable bit-stream, using only subsets for different machine vision tasks to save bit-rate, while employing the entire bit-stream for human vision tasks. Building on mainstream octree-based frameworks like VoxelContext-Net, OctAttention, and G-PCC, we introduce a new octree depth-level predictor. This predictor adaptively determines the optimal depth level for each octree constructed from a point cloud, controlling the bit-rate for machine vision tasks. For simpler tasks (\textit{e.g.}, classification) or objects/scenarios, we use fewer depth levels with fewer bits, saving bit-rate. Conversely, for more complex tasks (\textit{e.g}., segmentation) or objects/scenarios, we use deeper depth levels with more bits to enhance performance. Experimental results on various datasets (\textit{e.g}., ModelNet10, ModelNet40, ShapeNet, ScanNet, and KITTI) show that our point cloud compression approach improves performance for machine vision tasks without compromising human vision quality.
Abstract:Inspired by providing reliable communications for high-mobility scenarios, in this letter, we investigate the channel estimation and signal detection in integrated sensing and communication~(ISAC) systems based on the orthogonal delay-Doppler multiplexing~(ODDM) modulation, which consists of a pulse-train that can achieve the orthogonality with respect to the resolution of the delay-Doppler~(DD) plane. To enhance the communication performance in the ODDM-based ISAC systems, we first propose a low-complexity approximation algorithm for channel estimation, which addresses the challenge of the high complexity from high resolution in the ODDM modulation, and achieves performance close to that of the maximum likelihood estimator scheme. Then, we employ the orthogonal approximate message-passing scheme to detect the symbols in the communication process based on the estimated channel information. Finally, simulation results show that the detection performance of ODDM is better than other multi-carrier modulation schemes. Specifically, the ODDM outperforms the orthogonal time frequency space scheme by 2.3 dB when the bit error ratio is $10^{-6}$.




Abstract:Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems by accommodating artificial intelligence (AI) at the vehicular edge computing (VEC) system. Federated learning (FL) stands as one of the fundamental technologies facilitating collaborative model training locally and aggregation, while safeguarding the privacy of vehicle data in VEI. However, traditional FL faces challenges in adapting to vehicle heterogeneity, training large models on resource-constrained vehicles, and remaining susceptible to model weight privacy leakage. Meanwhile, split learning (SL) is proposed as a promising collaborative learning framework which can mitigate the risk of model wights leakage, and release the training workload on vehicles. SL sequentially trains a model between a vehicle and an edge cloud (EC) by dividing the entire model into a vehicle-side model and an EC-side model at a given cut layer. In this work, we combine the advantages of SL and FL to develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV). The ASFV scheme adaptively splits the model and parallelizes the training process, taking into account mobile vehicle selection and resource allocation. Our extensive simulations, conducted on non-independent and identically distributed data, demonstrate that the proposed ASFV solution significantly reduces training latency compared to existing benchmarks, while adapting to network dynamics and vehicles' mobility.




Abstract:Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.




Abstract:In this letter, we study interleave frequency division multiplexing (IFDM) for multicarrier modulation in static multipath and mobile time-varying channels, which outperforms orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS), and affine frequency division multiplexing (AFDM) by considering practical advanced detectors. The fundamental principle underlying existing modulation techniques is to establish sparse equivalent channel matrices in order to facilitate the design of low-complexity detection algorithms for signal recovery, making a trade-off between performance and implementation complexity. In contrast, the proposed IFDM establishes an equivalent fully dense and right-unitarily invariant channel matrix with the goal of achieving channel capacity, ensuring that the signals undergo sufficient statistical channel fading. Meanwhile, a low-complexity and replica maximum a posteriori (MAP)-optimal cross-domain memory approximate message passing (CD-MAMP) detector is proposed for IFDM by exploiting the sparsity of the time-domain channel and the unitary invariance in interleave-frequency-domain channel. Numerical results show that IFDM with extremely low-complexity CD-MAMP outperforms OFDM, OTFS, and AFDM with state-of-the-art orthogonal approximate message passing detectors, particularly at low velocities.




Abstract:Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis, owing to their unprecedented performance in modelling natural language. Ensuring the safe and reliable clinical applications, the evaluation of LLMs indeed becomes critical for better mitigating the potential risks, e.g., hallucinations. However, current evaluation methods heavily rely on labor-intensive human participation to achieve human-preferred judgements. To overcome this challenge, we propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services, e.g., disease diagnosis and treatment. The evaluation paradigm contains three basic elements: metric, data, and algorithm. Specifically, inspired by professional clinical practice pathways, we formulate a LLM-specific clinical pathway (LCP) to define the clinical capabilities that a doctor agent should possess. Then, Standardized Patients (SPs) from the medical education are introduced as the guideline for collecting medical data for evaluation, which can well ensure the completeness of the evaluation procedure. Leveraging these steps, we develop a multi-agent framework to simulate the interactive environment between SPs and a doctor agent, which is equipped with a Retrieval-Augmented Evaluation (RAE) to determine whether the behaviors of a doctor agent are in accordance with LCP. The above paradigm can be extended to any similar clinical scenarios to automatically evaluate the LLMs' medical capabilities. Applying such paradigm, we construct an evaluation benchmark in the field of urology, including a LCP, a SPs dataset, and an automated RAE. Extensive experiments are conducted to demonstrate the effectiveness of the proposed approach, providing more insights for LLMs' safe and reliable deployments in clinical practice.