Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Conor M. Artman, Aditya Mate, Ezinne Nwankwo, Aliza Heching, Tsuyoshi Idé, Jiří Navrátil, Karthikeyan Shanmugam, Wei Sun, Kush R. Varshney, Lauri Goldkind, Gidi Kroch, Jaclyn Sawyer, Ian Watson

We developed a common algorithmic solution addressing the problem of resource-constrained outreach encountered by social change organizations with different missions and operations: Breaking Ground -- an organization that helps individuals experiencing homelessness in New York transition to permanent housing and Leket -- the national food bank of Israel that rescues food from farms and elsewhere to feed the hungry. Specifically, we developed an estimation and optimization approach for partially-observed episodic restless bandits under $k$-step transitions. The results show that our Thompson sampling with Markov chain recovery (via Stein variational gradient descent) algorithm significantly outperforms baselines for the problems of both organizations. We carried out this work in a prospective manner with the express goal of devising a flexible-enough but also useful-enough solution that can help overcome a lack of sustainable impact in data science for social good.

Via

Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, Ali Tajer

This paper addresses intervention-based causal representation learning (CRL) under a general nonparametric latent causal model and an unknown transformation that maps the latent variables to the observed variables. Linear and general transformations are investigated. The paper addresses both the \emph{identifiability} and \emph{achievability} aspects. Identifiability refers to determining algorithm-agnostic conditions that ensure recovering the true latent causal variables and the latent causal graph underlying them. Achievability refers to the algorithmic aspects and addresses designing algorithms that achieve identifiability guarantees. By drawing novel connections between \emph{score functions} (i.e., the gradients of the logarithm of density functions) and CRL, this paper designs a \emph{score-based class of algorithms} that ensures both identifiability and achievability. First, the paper focuses on \emph{linear} transformations and shows that one stochastic hard intervention per node suffices to guarantee identifiability. It also provides partial identifiability guarantees for soft interventions, including identifiability up to ancestors for general causal models and perfect latent graph recovery for sufficiently non-linear causal models. Secondly, it focuses on \emph{general} transformations and shows that two stochastic hard interventions per node suffice for identifiability. Notably, one does \emph{not} need to know which pair of interventional environments have the same node intervened.

Via

Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, Prateek Jain

We consider the problem of \emph{blocked} collaborative bandits where there are multiple users, each with an associated multi-armed bandit problem. These users are grouped into \emph{latent} clusters such that the mean reward vectors of users within the same cluster are identical. Our goal is to design algorithms that maximize the cumulative reward accrued by all the users over time, under the \emph{constraint} that no arm of a user is pulled more than $\mathsf{B}$ times. This problem has been originally considered by \cite{Bresler:2014}, and designing regret-optimal algorithms for it has since remained an open problem. In this work, we propose an algorithm called \texttt{B-LATTICE} (Blocked Latent bAndiTs via maTrIx ComplEtion) that collaborates across users, while simultaneously satisfying the budget constraints, to maximize their cumulative rewards. Theoretically, under certain reasonable assumptions on the latent structure, with $\mathsf{M}$ users, $\mathsf{N}$ arms, $\mathsf{T}$ rounds per user, and $\mathsf{C}=O(1)$ latent clusters, \texttt{B-LATTICE} achieves a per-user regret of $\widetilde{O}(\sqrt{\mathsf{T}(1 + \mathsf{N}\mathsf{M}^{-1})}$ under a budget constraint of $\mathsf{B}=\Theta(\log \mathsf{T})$. These are the first sub-linear regret bounds for this problem, and match the minimax regret bounds when $\mathsf{B}=\mathsf{T}$. Empirically, we demonstrate that our algorithm has superior performance over baselines even when $\mathsf{B}=1$. \texttt{B-LATTICE} runs in phases where in each phase it clusters users into groups and collaborates across users within a group to quickly learn their reward models.

Via

Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, Ali Tajer

This paper focuses on causal representation learning (CRL) under a general nonparametric causal latent model and a general transformation model that maps the latent data to the observational data. It establishes \textbf{identifiability} and \textbf{achievability} results using two hard \textbf{uncoupled} interventions per node in the latent causal graph. Notably, one does not know which pair of intervention environments have the same node intervened (hence, uncoupled environments). For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions. For achievability, an algorithm is designed that uses observational and interventional data and recovers the latent causal model and variables with provable guarantees for the algorithm. This algorithm leverages score variations across different environments to estimate the inverse of the transformer and, subsequently, the latent variables. The analysis, additionally, recovers the existing identifiability result for two hard \textbf{coupled} interventions, that is when metadata about the pair of environments that have the same node intervened is known. It is noteworthy that the existing results on non-parametric identifiability require assumptions on interventions and additional faithfulness assumptions. This paper shows that when observational data is available, additional faithfulness assumptions are unnecessary.

Via

Shreyas Havaldar, Navodita Sharma, Shubhi Sareen, Karthikeyan Shanmugam, Aravindan Raghuveer

Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. Further, we iterate on the two steps again by using the second step's embeddings as new covariates for the next iteration. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (up to 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples.

Via

Shreyas Havaldar, Jatin Chauhan, Karthikeyan Shanmugam, Jay Nandy, Aravindan Raghuveer

Covariate shift in the test data can significantly downgrade both the accuracy and the fairness performance of the model. Ensuring fairness across different sensitive groups in such settings is of paramount importance due to societal implications like criminal justice. We operate under the unsupervised regime where only a small set of unlabeled test samples along with a labeled training set is available. Towards this problem, we make three contributions. First is a novel composite weighted entropy based objective for prediction accuracy which is optimized along with a representation matching loss for fairness. We experimentally verify that optimizing with our loss formulation outperforms a number of state-of-the-art baselines in the pareto sense with respect to the fairness-accuracy tradeoff on several standard datasets. Our second contribution is a new setting we term Asymmetric Covariate Shift that, to the best of our knowledge, has not been studied before. Asymmetric covariate shift occurs when distribution of covariates of one group shifts significantly compared to the other groups and this happens when a dominant group is over-represented. While this setting is extremely challenging for current baselines, We show that our proposed method significantly outperforms them. Our third contribution is theoretical, where we show that our weighted entropy term along with prediction loss on the training set approximates test loss under covariate shift. Empirically and through formal sample complexity bounds, we show that this approximation to the unseen test loss does not depend on importance sampling variance which affects many other baselines.

Via

Jiaqi Zhang, Chandler Squires, Kristjan Greenewald, Akash Srivastava, Karthikeyan Shanmugam, Caroline Uhler

Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model. Such a representation is identifiable if the latent model that explains the data is unique. In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable. When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions. We here show that identifiability can still be achieved with unobserved causal variables, given a generalized notion of faithfulness. Our results guarantee that we can recover the latent causal model up to an equivalence class and predict the effect of unseen combinations of interventions, in the limit of infinite data. We implement our causal disentanglement framework by developing an autoencoding variational Bayes algorithm and apply it to the problem of predicting combinatorial perturbation effects in genomics.

Via

Abhin Shah, Karthikeyan Shanmugam, Murat Kocaoglu

Causal effect estimation from data typically requires assumptions about the cause-effect relations either explicitly in the form of a causal graph structure within the Pearlian framework, or implicitly in terms of (conditional) independence statements between counterfactual variables within the potential outcomes framework. When the treatment variable and the outcome variable are confounded, front-door adjustment is an important special case where, given the graph, causal effect of the treatment on the target can be estimated using post-treatment variables. However, the exact formula for front-door adjustment depends on the structure of the graph, which is difficult to learn in practice. In this work, we provide testable conditional independence statements to compute the causal effect using front-door-like adjustment without knowing the graph under limited structural side information. We show that our method is applicable in scenarios where knowing the Markov equivalence class is not sufficient for causal effect estimation. We demonstrate the effectiveness of our method on a class of random graphs as well as real causal fairness benchmarks.

Via

Shubhada Agrawal, Sandeep Juneja, Karthikeyan Shanmugam, Arun Sai Suggala

Learning paradigms based purely on offline data as well as those based solely on sequential online learning have been well-studied in the literature. In this paper, we consider combining offline data with online learning, an area less studied but of obvious practical importance. We consider the stochastic $K$-armed bandit problem, where our goal is to identify the arm with the highest mean in the presence of relevant offline data, with confidence $1-\delta$. We conduct a lower bound analysis on policies that provide such $1-\delta$ probabilistic correctness guarantees. We develop algorithms that match the lower bound on sample complexity when $\delta$ is small. Our algorithms are computationally efficient with an average per-sample acquisition cost of $\tilde{O}(K)$, and rely on a careful characterization of the optimality conditions of the lower bound problem.

Via