Abstract:In observational settings where treatment and outcome share unmeasured confounders but an observed mediator remains unconfounded, the front-door (FD) adjustment identifies causal effects through the mediator. We study the heterogeneous treatment effect (HTE) under FD identification and introduce two debiased learners: FD-DR-Learner and FD-R-Learner. Both attain fast, quasi-oracle rates (i.e., performance comparable to an oracle that knows the nuisances) even when nuisance functions converge as slowly as n^-1/4. We provide error analyses establishing debiasedness and demonstrate robust empirical performance in synthetic studies and a real-world case study of primary seat-belt laws using Fatality Analysis Reporting System (FARS) dataset. Together, these results indicate that the proposed learners deliver reliable and sample-efficient HTE estimates in FD scenarios. The implementation is available at https://github.com/yonghanjung/FD-CATE. Keywords: Front-door adjustment; Heterogeneous treatment effects; Debiased learning; Quasi-oracle rates; Causal inference.
Abstract:Identifying and measuring biases associated with sensitive attributes is a crucial consideration in healthcare to prevent treatment disparities. One prominent issue is inaccurate pulse oximeter readings, which tend to overestimate oxygen saturation for dark-skinned patients and misrepresent supplemental oxygen needs. Most existing research has revealed statistical disparities linking device errors to patient outcomes in intensive care units (ICUs) without causal formalization. In contrast, this study causally investigates how racial discrepancies in oximetry measurements affect invasive ventilation in ICU settings. We employ a causal inference-based approach using path-specific effects to isolate the impact of bias by race on clinical decision-making. To estimate these effects, we leverage a doubly robust estimator, propose its self-normalized variant for improved sample efficiency, and provide novel finite-sample guarantees. Our methodology is validated on semi-synthetic data and applied to two large real-world health datasets: MIMIC-IV and eICU. Contrary to prior work, our analysis reveals minimal impact of racial discrepancies on invasive ventilation rates. However, path-specific effects mediated by oxygen saturation disparity are more pronounced on ventilation duration, and the severity differs by dataset. Our work provides a novel and practical pipeline for investigating potential disparities in the ICU and, more crucially, highlights the necessity of causal methods to robustly assess fairness in decision-making.