Iowa State University
Abstract:Testing a hypothesized causal model against observational data is a key prerequisite for many causal inference tasks. A natural approach is to test whether the conditional independence relations (CIs) assumed in the model hold in the data. While a model can assume exponentially many CIs (with respect to the number of variables), testing all of them is both impractical and unnecessary. Causal graphs, which encode these CIs in polynomial space, give rise to local Markov properties that enable model testing with a significantly smaller subset of CIs. Model testing based on local properties requires an algorithm to list the relevant CIs. However, existing algorithms for realistic settings with hidden variables and non-parametric distributions can take exponential time to produce even a single CI constraint. In this paper, we introduce the c-component local Markov property (C-LMP) for causal graphs with hidden variables. Since C-LMP can still invoke an exponential number of CIs, we develop a polynomial delay algorithm to list these CIs in poly-time intervals. To our knowledge, this is the first algorithm that enables poly-delay testing of CIs in causal graphs with hidden variables against arbitrary data distributions. Experiments on real-world and synthetic data demonstrate the practicality of our algorithm.
Abstract:The standard approach to answering an identifiable causal-effect query (e.g., $P(Y|do(X)$) when given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this \emph{model completion} learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method's potential using a benchmark collection of Bayesian networks and synthetically generated causal models.
Abstract:Tabular data is ubiquitous in real-world applications and abundant on the web, yet its annotation has traditionally required human labor, posing a significant scalability bottleneck for tabular machine learning. Our methodology can successfully annotate a large amount of tabular data and can be flexibly steered to generate various types of annotations based on specific research objectives, as we demonstrate with SQL annotation and input-target column annotation as examples. As a result, we release AnnotatedTables, a collection of 32,119 databases with LLM-generated annotations. The dataset includes 405,616 valid SQL programs, making it the largest SQL dataset with associated tabular data that supports query execution. To further demonstrate the value of our methodology and dataset, we perform two follow-up research studies. 1) We investigate whether LLMs can translate SQL programs to Rel programs, a database language previously unknown to LLMs, while obtaining the same execution results. Using our Incremental Prompt Engineering methods based on execution feedback, we show that LLMs can produce adequate translations with few-shot learning. 2) We evaluate the performance of TabPFN, a recent neural tabular classifier trained on Bayesian priors, on 2,720 tables with input-target columns identified and annotated by LLMs. On average, TabPFN performs on par with the baseline AutoML method, though the relative performance can vary significantly from one data table to another, making both models viable for practical applications depending on the situation. Our findings underscore the potential of LLMs in automating the annotation of large volumes of diverse tabular data.
Abstract:Probabilities of causation (PoC) are valuable concepts for explainable artificial intelligence and practical decision-making. PoC are originally defined for scalar binary variables. In this paper, we extend the concept of PoC to continuous treatment and outcome variables, and further generalize PoC to capture causal effects between multiple treatments and multiple outcomes. In addition, we consider PoC for a sub-population and PoC with multi-hypothetical terms to capture more sophisticated counterfactual information useful for decision-making. We provide a nonparametric identification theorem for each type of PoC we introduce. Finally, we illustrate the application of our results on a real-world dataset about education.
Abstract:Adversarial Training (AT) effectively improves the robustness of Deep Neural Networks (DNNs) to adversarial attacks. Generally, AT involves training DNN models with adversarial examples obtained within a pre-defined, fixed perturbation bound. Notably, individual natural examples from which these adversarial examples are crafted exhibit varying degrees of intrinsic vulnerabilities, and as such, crafting adversarial examples with fixed perturbation radius for all instances may not sufficiently unleash the potency of AT. Motivated by this observation, we propose two simple, computationally cheap vulnerability-aware reweighting functions for assigning perturbation bounds to adversarial examples used for AT, named Margin-Weighted Perturbation Budget (MWPB) and Standard-Deviation-Weighted Perturbation Budget (SDWPB). The proposed methods assign perturbation radii to individual adversarial samples based on the vulnerability of their corresponding natural examples. Experimental results show that the proposed methods yield genuine improvements in the robustness of AT algorithms against various adversarial attacks.
Abstract:There has been considerable recent interest in estimating heterogeneous causal effects. In this paper, we introduce conditional average partial causal effects (CAPCE) to reveal the heterogeneity of causal effects with continuous treatment. We provide conditions for identifying CAPCE in an instrumental variable setting. We develop three families of CAPCE estimators: sieve, parametric, and reproducing kernel Hilbert space (RKHS)-based, and analyze their statistical properties. We illustrate the proposed CAPCE estimators on synthetic and real-world data.
Abstract:Adversarial Training (AT) has been found to substantially improve the robustness of deep learning classifiers against adversarial attacks. AT involves obtaining robustness by including adversarial examples in training a classifier. Most variants of AT algorithms treat every training example equally. However, recent works have shown that better performance is achievable by treating them unequally. In addition, it has been observed that AT exerts an uneven influence on different classes in a training set and unfairly hurts examples corresponding to classes that are inherently harder to classify. Consequently, various reweighting schemes have been proposed that assign unequal weights to robust losses of individual examples in a training set. In this work, we propose a novel instance-wise reweighting scheme. It considers the vulnerability of each natural example and the resulting information loss on its adversarial counterpart occasioned by adversarial attacks. Through extensive experiments, we show that our proposed method significantly improves over existing reweighting schemes, especially against strong white and black-box attacks.
Abstract:Can a generic (Python) program be executed statement-by-statement by neural networks composed according to the source code? We formulate the Abstract Neural Execution Problem and introduce Neural Interpretation, the first neural model that abstractly executes generic source code, where every variable has a vector encoding, and every function executes a neural network. Neural Interpretation is a model of computers with a compiler architecture, which can assemble neural layers ''programmed'' by partial source code. Neural Interpretation can be trained with flexible learning objectives. We demonstrate white-box execution without concrete inputs for variable misuse localization and repair.
Abstract:Adversarial training (AT) methods have been found to be effective against adversarial attacks on deep neural networks. Many variants of AT have been proposed to improve its performance. Pang et al. [1] have recently shown that incorporating hypersphere embedding (HE) into the existing AT procedures enhances robustness. We observe that the existing AT procedures are not designed for the HE framework, and thus fail to adequately learn the angular discriminative information available in the HE framework. In this paper, we propose integrating HE into AT with regularization terms that exploit the rich angular information available in the HE framework. Specifically, our method, termed angular-AT, adds regularization terms to AT that explicitly enforce weight-feature compactness and inter-class separation; all expressed in terms of angular features. Experimental results show that angular-AT further improves adversarial robustness.
Abstract:Identifying the effects of new interventions from data is a significant challenge found across a wide range of the empirical sciences. A well-known strategy for identifying such effects is Pearl's front-door (FD) criterion (Pearl, 1995). The definition of the FD criterion is declarative, only allowing one to decide whether a specific set satisfies the criterion. In this paper, we present algorithms for finding and enumerating possible sets satisfying the FD criterion in a given causal diagram. These results are useful in facilitating the practical applications of the FD criterion for causal effects estimation and helping scientists to select estimands with desired properties, e.g., based on cost, feasibility of measurement, or statistical power.