Abstract:Generating articulated assets is crucial for robotics, digital twins, and embodied intelligence. Existing generative models often rely on single-view inputs representing closed states, resulting in ambiguous or unrealistic kinematic structures due to the entanglement between geometric shape and joint dynamics. To address these challenges, we introduce ArtGen, a conditional diffusion-based framework capable of generating articulated 3D objects with accurate geometry and coherent kinematics from single-view images or text descriptions at arbitrary part-level states. Specifically, ArtGen employs cross-state Monte Carlo sampling to explicitly enforce global kinematic consistency, reducing structural-motion entanglement. Additionally, we integrate a Chain-of-Thought reasoning module to infer robust structural priors, such as part semantics, joint types, and connectivity, guiding a sparse-expert Diffusion Transformer to specialize in diverse kinematic interactions. Furthermore, a compositional 3D-VAE latent prior enhanced with local-global attention effectively captures fine-grained geometry and global part-level relationships. Extensive experiments on the PartNet-Mobility benchmark demonstrate that ArtGen significantly outperforms state-of-the-art methods.
Abstract:Articulated objects are ubiquitous in everyday life, and accurate 3D representations of their geometry and motion are critical for numerous applications. However, in the absence of human annotation, existing approaches still struggle to build a unified representation for objects that contain multiple movable parts. We introduce DeGSS, a unified framework that encodes articulated objects as deformable 3D Gaussian fields, embedding geometry, appearance, and motion in one compact representation. Each interaction state is modeled as a smooth deformation of a shared field, and the resulting deformation trajectories guide a progressive coarse-to-fine part segmentation that identifies distinct rigid components, all in an unsupervised manner. The refined field provides a spatially continuous, fully decoupled description of every part, supporting part-level reconstruction and precise modeling of their kinematic relationships. To evaluate generalization and realism, we enlarge the synthetic PartNet-Mobility benchmark and release RS-Art, a real-to-sim dataset that pairs RGB captures with accurately reverse-engineered 3D models. Extensive experiments demonstrate that our method outperforms existing methods in both accuracy and stability.