Sherman
Abstract:Human activity recognition (HAR) will be an essential function of various emerging applications. However, HAR typically encounters challenges related to modality limitations and label scarcity, leading to an application gap between current solutions and real-world requirements. In this work, we propose MESEN, a multimodal-empowered unimodal sensing framework, to utilize unlabeled multimodal data available during the HAR model design phase for unimodal HAR enhancement during the deployment phase. From a study on the impact of supervised multimodal fusion on unimodal feature extraction, MESEN is designed to feature a multi-task mechanism during the multimodal-aided pre-training stage. With the proposed mechanism integrating cross-modal feature contrastive learning and multimodal pseudo-classification aligning, MESEN exploits unlabeled multimodal data to extract effective unimodal features for each modality. Subsequently, MESEN can adapt to downstream unimodal HAR with only a few labeled samples. Extensive experiments on eight public multimodal datasets demonstrate that MESEN achieves significant performance improvements over state-of-the-art baselines in enhancing unimodal HAR by exploiting multimodal data.
Abstract:Tracking by natural language specification (TNL) aims to consistently localize a target in a video sequence given a linguistic description in the initial frame. Existing methodologies perform language-based and template-based matching for target reasoning separately and merge the matching results from two sources, which suffer from tracking drift when language and visual templates miss-align with the dynamic target state and ambiguity in the later merging stage. To tackle the issues, we propose a joint multi-modal tracking framework with 1) a prompt modulation module to leverage the complementarity between temporal visual templates and language expressions, enabling precise and context-aware appearance and linguistic cues, and 2) a unified target decoding module to integrate the multi-modal reference cues and executes the integrated queries on the search image to predict the target location in an end-to-end manner directly. This design ensures spatio-temporal consistency by leveraging historical visual information and introduces an integrated solution, generating predictions in a single step. Extensive experiments conducted on TNL2K, OTB-Lang, LaSOT, and RefCOCOg validate the efficacy of our proposed approach. The results demonstrate competitive performance against state-of-the-art methods for both tracking and grounding.
Abstract:Trajectory prediction is an essential component in autonomous driving, particularly for collision avoidance systems. Considering the inherent uncertainty of the task, numerous studies have utilized generative models to produce multiple plausible future trajectories for each agent. However, most of them suffer from restricted representation ability or unstable training issues. To overcome these limitations, we propose utilizing the diffusion model to generate the distribution of future trajectories. Two cruxes are to be settled to realize such an idea. First, the diversity of intention is intertwined with the uncertain surroundings, making the true distribution hard to parameterize. Second, the diffusion process is time-consuming during the inference phase, rendering it unrealistic to implement in a real-time driving system. We propose an Intention-aware denoising Diffusion Model (IDM), which tackles the above two problems. We decouple the original uncertainty into intention uncertainty and action uncertainty and model them with two dependent diffusion processes. To decrease the inference time, we reduce the variable dimensions in the intention-aware diffusion process and restrict the initial distribution of the action-aware diffusion process, which leads to fewer diffusion steps. To validate our approach, we conduct experiments on the Stanford Drone Dataset (SDD) and ETH/UCY dataset. Our methods achieve state-of-the-art results, with an FDE of 13.83 pixels on the SDD dataset and 0.36 meters on the ETH/UCY dataset. Compared with the original diffusion model, IDM reduces inference time by two-thirds. Interestingly, our experiments further reveal that introducing intention information is beneficial in modeling the diffusion process of fewer steps.
Abstract:Recently, promptable segmentation models, such as the Segment Anything Model (SAM), have demonstrated robust zero-shot generalization capabilities on static images. These promptable models exhibit denoising abilities for imprecise prompt inputs, such as imprecise bounding boxes. In this paper, we explore the potential of applying SAM to track and segment objects in videos where we recognize the tracking task as a prompt denoising task. Specifically, we iteratively propagate the bounding box of each object's mask in the preceding frame as the prompt for the next frame. Furthermore, to enhance SAM's denoising capability against position and size variations, we propose a multi-prompt strategy where we provide multiple jittered and scaled box prompts for each object and preserve the mask prediction with the highest semantic similarity to the template mask. We also introduce a point-based refinement stage to handle occlusions and reduce cumulative errors. Without involving tracking modules, our approach demonstrates comparable performance in video object/instance segmentation tasks on three datasets: DAVIS2017, YouTubeVOS2018, and UVO, serving as a concise baseline and endowing SAM-based downstream applications with tracking capabilities.
Abstract:Given 2D point correspondences between an image pair, inferring the camera motion is a fundamental issue in the computer vision community. The existing works generally set out from the epipolar constraint and estimate the essential matrix, which is not optimal in the maximum likelihood (ML) sense. In this paper, we dive into the original measurement model with respect to the rotation matrix and normalized translation vector and formulate the ML problem. We then propose a two-step algorithm to solve it: In the first step, we estimate the variance of measurement noises and devise a consistent estimator based on bias elimination; In the second step, we execute a one-step Gauss-Newton iteration on manifold to refine the consistent estimate. We prove that the proposed estimate owns the same asymptotic statistical properties as the ML estimate: The first is consistency, i.e., the estimate converges to the ground truth as the point number increases; The second is asymptotic efficiency, i.e., the mean squared error of the estimate converges to the theoretical lower bound -- Cramer-Rao bound. In addition, we show that our algorithm has linear time complexity. These appealing characteristics endow our estimator with a great advantage in the case of dense point correspondences. Experiments on both synthetic data and real images demonstrate that when the point number reaches the order of hundreds, our estimator outperforms the state-of-the-art ones in terms of estimation accuracy and CPU time.
Abstract:The autonomous quadrotor's flying speed has kept increasing in the past 5 years, especially in the field of autonomous drone racing. However, the majority of the research mainly focuses on the aggressive flight of a single quadrotor. In this letter, we propose a novel method called Pairwise Model Predictive Control (PMPC) that can guide two quadrotors online to fly through the waypoints with minimum time without collisions. The flight task is first modeled as a nonlinear optimization problem and then an efficient two-step mass point velocity search method is used to provide initial values and references to improve the solving efficiency so that the method can run online with a frequency of 50 Hz and can handle dynamic waypoints. The simulation and real-world experiments validate the feasibility of the proposed method and in the real-world experiments, the two quadrotors can achieve a top speed of 8.1m/s in a 6-waypoint racing track in a compact flying arena of 6m*4m*2m.
Abstract:Over the past decade, there has been a remarkable surge in utilizing quadrotors for various purposes due to their simple structure and aggressive maneuverability, such as search and rescue, delivery and autonomous drone racing, etc. One of the key challenges preventing quadrotors from being widely used in these scenarios is online waypoint-constrained time-optimal trajectory generation and control technique. This letter proposes an imitation learning-based online solution to efficiently navigate the quadrotor through multiple waypoints with time-optimal performance. The neural networks (WN&CNets) are trained to learn the control law from the dataset generated by the time-consuming CPC algorithm and then deployed to generate the optimal control commands online to guide the quadrotors. To address the challenge of limited training data and the hover maneuver at the final waypoint, we propose a transition phase strategy that utilizes polynomials to help the quadrotor 'jump over' the stop-and-go maneuver when switching waypoints. Our method is demonstrated in both simulation and real-world experiments, achieving a maximum speed of 7 m/s while navigating through 7 waypoints in a confined space of 6.0 m * 4.0 m * 2.0 m. The results show that with a slight loss in optimality, the WN&CNets significantly reduce the processing time and enable online optimal control for multiple-waypoint-constrained flight tasks.
Abstract:Our work aims to reconstruct a 3D object that is held and rotated by a hand in front of a static RGB camera. Previous methods that use implicit neural representations to recover the geometry of a generic hand-held object from multi-view images achieved compelling results in the visible part of the object. However, these methods falter in accurately capturing the shape within the hand-object contact region due to occlusion. In this paper, we propose a novel method that deals with surface reconstruction under occlusion by incorporating priors of 2D occlusion elucidation and physical contact constraints. For the former, we introduce an object amodal completion network to infer the 2D complete mask of objects under occlusion. To ensure the accuracy and view consistency of the predicted 2D amodal masks, we devise a joint optimization method for both amodal mask refinement and 3D reconstruction. For the latter, we impose penetration and attraction constraints on the local geometry in contact regions. We evaluate our approach on HO3D and HOD datasets and demonstrate that it outperforms the state-of-the-art methods in terms of reconstruction surface quality, with an improvement of $52\%$ on HO3D and $20\%$ on HOD. Project webpage: https://east-j.github.io/ihor.
Abstract:Inverse reinforcement learning (IRL) usually assumes the model of the reward function is pre-specified and estimates the parameter only. However, how to determine a proper reward model is nontrivial. A simplistic model is less likely to contain the real reward function, while a model with high complexity leads to substantial computation cost and risks overfitting. This paper addresses this trade-off in IRL model selection by introducing the structural risk minimization (SRM) method from statistical learning. SRM selects an optimal reward function class from a hypothesis set minimizing both estimation error and model complexity. To formulate an SRM scheme for IRL, we estimate policy gradient by demonstration serving as empirical risk and establish the upper bound of Rademacher complexity of hypothesis classes as model penalty. The learning guarantee is further presented. In particular, we provide explicit SRM for the common linear weighted sum setting in IRL. Simulations demonstrate the performance and efficiency of our scheme.
Abstract:Anomaly detection in multivariate time series (MTS) has been widely studied in one-class classification (OCC) setting. The training samples in OCC are assumed to be normal, which is difficult to guarantee in practical situations. Such a case may degrade the performance of OCC-based anomaly detection methods which fit the training distribution as the normal distribution. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for MTS anomaly detection via dynamic Graph and entity-aware normalizing Flow. MTGFlow first estimates the density of the entire training samples and then identifies anomalous instances based on the density of the test samples within the fitted distribution. This relies on a widely accepted assumption that anomalous instances exhibit more sparse densities than normal ones, with no reliance on the clean training dataset. However, it is intractable to directly estimate the density due to complex dependencies among entities and their diverse inherent characteristics. To mitigate this, we utilize the graph structure learning model to learn interdependent and evolving relations among entities, which effectively captures complex and accurate distribution patterns of MTS. In addition, our approach incorporates the unique characteristics of individual entities by employing an entity-aware normalizing flow. This enables us to represent each entity as a parameterized normal distribution. Furthermore, considering that some entities present similar characteristics, we propose a cluster strategy that capitalizes on the commonalities of entities with similar characteristics, resulting in more precise and detailed density estimation. We refer to this cluster-aware extension as MTGFlow_cluster. Extensive experiments are conducted on six widely used benchmark datasets, in which MTGFlow and MTGFlow cluster demonstrate their superior detection performance.