Abstract:Human action understanding is a fundamental and challenging task in computer vision. Although there exists tremendous research on this area, most works focus on action recognition, while action retrieval has received less attention. In this paper, we focus on the neglected but important task of image-based action retrieval which aims to find images that depict the same action as a query image. We establish benchmarks for this task and set up important baseline methods for fair comparison. We present an end-to-end model that learns rich action representations from three aspects: the anchored person, contextual regions, and the global image. A novel fusion transformer module is designed to model the relationships among different features and effectively fuses them into an action representation. Experiments on the Stanford-40 and PASCAL VOC 2012 Action datasets show that the proposed method significantly outperforms previous approaches for image-based action retrieval.
Abstract:Underwater image enhancement (UIE) is a challenging research task in the field of computer vision. Although hundreds of UIE algorithms have been proposed, a comprehensive and systematic review is still lacking. To promote future research, we summarize the UIE task from multiple perspectives. First, the physical models, data construction processes, evaluation metrics, and loss functions are introduced. Second, according to the contributions brought by different literatures, recent proposed algorithms are discussed and classified from six perspectives, namely network architecture, learning strategy, learning stage, assistance task, domain perspective and disentanglement fusion, respectively. Third, considering the inconsistencies in experimental settings in different literatures, a comprehensive and fair comparison does not yet exist. To this end, we quantitatively and qualitatively evaluate state-of-the-art algorithms on multiple benchmark datasets. Finally, issues worthy of further research in the UIE task are raised. A collection of useful materials is available at https://github.com/YuZhao1999/UIE.
Abstract:While dynamic graph neural networks have shown promise in various applications, explaining their predictions on continuous-time dynamic graphs (CTDGs) is difficult. This paper investigates a new research task: self-interpretable GNNs for CTDGs. We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions. There are two key challenges: (1) capturing the underlying structural and temporal information that remains consistent across both independent and identically distributed (IID) and out-of-distribution (OOD) data, and (2) efficiently generating high-quality link prediction results and explanations. To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM). ICCM is then integrated into a deep learning architecture that considers both effectiveness and efficiency. Extensive experiments demonstrate that our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features. Our code and datasets are anonymously released at https://github.com/2024SIG/SIG.
Abstract:Point cloud registration (PCR) involves determining a rigid transformation that aligns one point cloud to another. Despite the plethora of outstanding deep learning (DL)-based registration methods proposed, comprehensive and systematic studies on DL-based PCR techniques are still lacking. In this paper, we present a comprehensive survey and taxonomy of recently proposed PCR methods. Firstly, we conduct a taxonomy of commonly utilized datasets and evaluation metrics. Secondly, we classify the existing research into two main categories: supervised and unsupervised registration, providing insights into the core concepts of various influential PCR models. Finally, we highlight open challenges and potential directions for future research. A curated collection of valuable resources is made available at https://github.com/yxzhang15/PCR.
Abstract:Existing research based on deep learning has extensively explored the problem of daytime image dehazing. However, few studies have considered the characteristics of nighttime hazy scenes. There are two distinctions between nighttime and daytime haze. First, there may be multiple active colored light sources with lower illumination intensity in nighttime scenes, which may cause haze, glow and noise with localized, coupled and frequency inconsistent characteristics. Second, due to the domain discrepancy between simulated and real-world data, unrealistic brightness may occur when applying a dehazing model trained on simulated data to real-world data. To address the above two issues, we propose a semi-supervised model for real-world nighttime dehazing. First, the spatial attention and frequency spectrum filtering are implemented as a spatial-frequency domain information interaction module to handle the first issue. Second, a pseudo-label-based retraining strategy and a local window-based brightness loss for semi-supervised training process is designed to suppress haze and glow while achieving realistic brightness. Experiments on public benchmarks validate the effectiveness of the proposed method and its superiority over state-of-the-art methods. The source code and Supplementary Materials are placed in the https://github.com/Xiaofeng-life/SFSNiD.
Abstract:On the one hand, the dehazing task is an illposedness problem, which means that no unique solution exists. On the other hand, the dehazing task should take into account the subjective factor, which is to give the user selectable dehazed images rather than a single result. Therefore, this paper proposes a multi-output dehazing network by introducing illumination controllable ability, called IC-Dehazing. The proposed IC-Dehazing can change the illumination intensity by adjusting the factor of the illumination controllable module, which is realized based on the interpretable Retinex theory. Moreover, the backbone dehazing network of IC-Dehazing consists of a Transformer with double decoders for high-quality image restoration. Further, the prior-based loss function and unsupervised training strategy enable IC-Dehazing to complete the parameter learning process without the need for paired data. To demonstrate the effectiveness of the proposed IC-Dehazing, quantitative and qualitative experiments are conducted on image dehazing, semantic segmentation, and object detection tasks. Code is available at https://github.com/Xiaofeng-life/ICDehazing.
Abstract:Online Social Network (OSN) has become a hotbed of fake news due to the low cost of information dissemination. Although the existing methods have made many attempts in news content and propagation structure, the detection of fake news is still facing two challenges: one is how to mine the unique key features and evolution patterns, and the other is how to tackle the problem of small samples to build the high-performance model. Different from popular methods which take full advantage of the propagation topology structure, in this paper, we propose a novel framework for fake news detection from perspectives of semantic, emotion and data enhancement, which excavates the emotional evolution patterns of news participants during the propagation process, and a dual deep interaction channel network of semantic and emotion is designed to obtain a more comprehensive and fine-grained news representation with the consideration of comments. Meanwhile, the framework introduces a data enhancement module to obtain more labeled data with high quality based on confidence which further improves the performance of the classification model. Experiments show that the proposed approach outperforms the state-of-the-art methods.
Abstract:The research on single image dehazing task has been widely explored. However, as far as we know, no comprehensive study has been conducted on the robustness of the well-trained dehazing models. Therefore, there is no evidence that the dehazing networks can resist malicious attacks. In this paper, we focus on designing a group of attack methods based on first order gradient to verify the robustness of the existing dehazing algorithms. By analyzing the general goal of image dehazing task, five attack methods are proposed, which are prediction, noise, mask, ground-truth and input attack. The corresponding experiments are conducted on six datasets with different scales. Further, the defense strategy based on adversarial training is adopted for reducing the negative effects caused by malicious attacks. In summary, this paper defines a new challenging problem for image dehazing area, which can be called as adversarial attack on dehazing networks (AADN). Code is available at https://github.com/guijiejie/AADN.
Abstract:Deep supervised learning algorithms generally require large numbers of labeled examples to attain satisfactory performance. To avoid the expensive cost incurred by collecting and labeling too many examples, as a subset of unsupervised learning, self-supervised learning (SSL) was proposed to learn good features from many unlabeled examples without any human-annotated labels. SSL has recently become a hot research topic, and many related algorithms have been proposed. However, few comprehensive studies have explained the connections among different SSL variants and how they have evolved. In this paper, we attempt to provide a review of the various SSL methods from the perspectives of algorithms, theory, applications, three main trends, and open questions. First, the motivations of most SSL algorithms are introduced in detail, and their commonalities and differences are compared. Second, the theoretical issues associated with SSL are investigated. Third, typical applications of SSL in areas such as image processing and computer vision (CV), as well as natural language processing (NLP), are discussed. Finally, the three main trends of SSL and the open research questions are discussed. A collection of useful materials is available at https://github.com/guijiejie/SSL.
Abstract:Self-supervised learning enables networks to learn discriminative features from massive data itself. Most state-of-the-art methods maximize the similarity between two augmentations of one image based on contrastive learning. By utilizing the consistency of two augmentations, the burden of manual annotations can be freed. Contrastive learning exploits instance-level information to learn robust features. However, the learned information is probably confined to different views of the same instance. In this paper, we attempt to leverage the similarity between two distinct images to boost representation in self-supervised learning. In contrast to instance-level information, the similarity between two distinct images may provide more useful information. Besides, we analyze the relation between similarity loss and feature-level cross-entropy loss. These two losses are essential for most deep learning methods. However, the relation between these two losses is not clear. Similarity loss helps obtain instance-level representation, while feature-level cross-entropy loss helps mine the similarity between two distinct images. We provide theoretical analyses and experiments to show that a suitable combination of these two losses can get state-of-the-art results.