The motivations of users to make interactions can be divided into static preference and dynamic interest. To accurately model user representations over time, recent studies in sequential recommendation utilize information propagation and evolution to mine from batches of arriving interactions. However, they ignore the fact that people are easily influenced by the recent actions of other users in the contextual scenario, and applying evolution across all historical interactions dilutes the importance of recent ones, thus failing to model the evolution of dynamic interest accurately. To address this issue, we propose a Context-Aware Pseudo-Multi-Task Recommender System (CPMR) to model the evolution in both historical and contextual scenarios by creating three representations for each user and item under different dynamics: static embedding, historical temporal states, and contextual temporal states. To dually improve the performance of temporal states evolution and incremental recommendation, we design a Pseudo-Multi-Task Learning (PMTL) paradigm by stacking the incremental single-target recommendations into one multi-target task for joint optimization. Within the PMTL paradigm, CPMR employs a shared-bottom network to conduct the evolution of temporal states across historical and contextual scenarios, as well as the fusion of them at the user-item level. In addition, CPMR incorporates one real tower for incremental predictions, and two pseudo towers dedicated to updating the respective temporal states based on new batches of interactions. Experimental results on four benchmark recommendation datasets show that CPMR consistently outperforms state-of-the-art baselines and achieves significant gains on three of them. The code is available at: https://github.com/DiMarzioBian/CPMR.
Functional magnetic resonance imaging (fMRI) is a commonly used technique to measure neural activation. Its application has been particularly important in identifying underlying neurodegenerative conditions such as Parkinson's, Alzheimer's, and Autism. Recent analysis of fMRI data models the brain as a graph and extracts features by graph neural networks (GNNs). However, the unique characteristics of fMRI data require a special design of GNN. Tailoring GNN to generate effective and domain-explainable features remains challenging. In this paper, we propose a contrastive dual-attention block and a differentiable graph pooling method called ContrastPool to better utilize GNN for brain networks, meeting fMRI-specific requirements. We apply our method to 5 resting-state fMRI brain network datasets of 3 diseases and demonstrate its superiority over state-of-the-art baselines. Our case study confirms that the patterns extracted by our method match the domain knowledge in neuroscience literature, and disclose direct and interesting insights. Our contributions underscore the potential of ContrastPool for advancing the understanding of brain networks and neurodegenerative conditions.
Graph Neural Networks (GNNs) are widely used for graph representation learning in many application domains. The expressiveness of vanilla GNNs is upper-bounded by 1-dimensional Weisfeiler-Leman (1-WL) test as they operate on rooted subtrees through iterative message passing. In this paper, we empower GNNs by injecting neighbor-connectivity information extracted from a new type of substructure. We first investigate different kinds of connectivities existing in a local neighborhood and identify a substructure called union subgraph, which is able to capture the complete picture of the 1-hop neighborhood of an edge. We then design a shortest-path-based substructure descriptor that possesses three nice properties and can effectively encode the high-order connectivities in union subgraphs. By infusing the encoded neighbor connectivities, we propose a novel model, namely Union Subgraph Neural Network (UnionSNN), which is proven to be strictly more powerful than 1-WL in distinguishing non-isomorphic graphs. Additionally, the local encoding from union subgraphs can also be injected into arbitrary message-passing neural networks (MPNNs) and Transformer-based models as a plugin. Extensive experiments on 17 benchmarks of both graph-level and node-level tasks demonstrate that UnionSNN outperforms state-of-the-art baseline models, with competitive computational efficiency. The injection of our local encoding to existing models is able to boost the performance by up to 11.09%.
Link prediction aims to identify potential missing triples in knowledge graphs. To get better results, some recent studies have introduced multimodal information to link prediction. However, these methods utilize multimodal information separately and neglect the complicated interaction between different modalities. In this paper, we aim at better modeling the inter-modality information and thus introduce a novel Interactive Multimodal Fusion (IMF) model to integrate knowledge from different modalities. To this end, we propose a two-stage multimodal fusion framework to preserve modality-specific knowledge as well as take advantage of the complementarity between different modalities. Instead of directly projecting different modalities into a unified space, our multimodal fusion module limits the representations of different modalities independent while leverages bilinear pooling for fusion and incorporates contrastive learning as additional constraints. Furthermore, the decision fusion module delivers the learned weighted average over the predictions of all modalities to better incorporate the complementarity of different modalities. Our approach has been demonstrated to be effective through empirical evaluations on several real-world datasets. The implementation code is available online at https://github.com/HestiaSky/IMF-Pytorch.
Understanding the intention of the users and recognizing the semantic entities from their sentences, aka natural language understanding (NLU), is the upstream task of many natural language processing tasks. One of the main challenges is to collect a sufficient amount of annotated data to train a model. Existing research about text augmentation does not abundantly consider entity and thus performs badly for NLU tasks. To solve this problem, we propose a novel NLP data augmentation technique, Entity Aware Data Augmentation (EADA), which applies a tree structure, Entity Aware Syntax Tree (EAST), to represent sentences combined with attention on the entity. Our EADA technique automatically constructs an EAST from a small amount of annotated data, and then generates a large number of training instances for intent detection and slot filling. Experimental results on four datasets showed that the proposed technique significantly outperforms the existing data augmentation methods in terms of both accuracy and generalization ability.
Graph Neural Networks (GNNs) are widely used for graph representation learning. Despite its prevalence, GNN suffers from two drawbacks in the graph classification task, the neglect of graph-level relationships, and the generalization issue. Each graph is treated separately in GNN message passing/graph pooling, and existing methods to address overfitting operate on each individual graph. This makes the graph representations learnt less effective in the downstream classification. In this paper, we propose a Class-Aware Representation rEfinement (CARE) framework for the task of graph classification. CARE computes simple yet powerful class representations and injects them to steer the learning of graph representations towards better class separability. CARE is a plug-and-play framework that is highly flexible and able to incorporate arbitrary GNN backbones without significantly increasing the computational cost. We also theoretically prove that CARE has a better generalization upper bound than its GNN backbone through Vapnik-Chervonenkis (VC) dimension analysis. Our extensive experiments with 10 well-known GNN backbones on 9 benchmark datasets validate the superiority and effectiveness of CARE over its GNN counterparts.