Abstract:The rapid progress of generative models has intensified the need for reliable and robust detection under real-world conditions. However, existing detectors often overfit to generator-specific artifacts and remain highly sensitive to real-world degradations. As generative architectures evolve and images undergo multi-round cross-platform sharing and post-processing (chain degradations), these artifact cues become obsolete and harder to detect. To address this, we propose Real-centric Envelope Modeling (REM), a new paradigm that shifts detection from learning generator artifacts to modeling the robust distribution of real images. REM introduces feature-level perturbations in self-reconstruction to generate near-real samples, and employs an envelope estimator with cross-domain consistency to learn a boundary enclosing the real image manifold. We further build RealChain, a comprehensive benchmark covering both open-source and commercial generators with simulated real-world degradation. Across eight benchmark evaluations, REM achieves an average improvement of 7.5% over state-of-the-art methods, and notably maintains exceptional generalization on the severely degraded RealChain benchmark, establishing a solid foundation for synthetic image detection under real-world conditions. The code and the RealChain benchmark will be made publicly available upon acceptance of the paper.
Abstract:With growing concerns over image authenticity and digital safety, the field of AI-generated image (AIGI) detection has progressed rapidly. Yet, most AIGI detectors still struggle under real-world degradations, particularly motion blur, which frequently occurs in handheld photography, fast motion, and compressed video. Such blur distorts fine textures and suppresses high-frequency artifacts, causing severe performance drops in real-world settings. We address this limitation with a blur-robust AIGI detection framework based on teacher-student knowledge distillation. A high-capacity teacher (DINOv3), trained on clean (i.e., sharp) images, provides stable and semantically rich representations that serve as a reference for learning. By freezing the teacher to maintain its generalization ability, we distill its feature and logit responses from sharp images to a student trained on blurred counterparts, enabling the student to produce consistent representations under motion degradation. Extensive experiments benchmarks show that our method achieves state-of-the-art performance under both motion-blurred and clean conditions, demonstrating improved generalization and real-world applicability. Source codes will be released at: https://github.com/JiaLiangShen/Dino-Detect-for-blur-robust-AIGC-Detection.




Abstract:Understanding what graph layout human prefer and why they prefer is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts. In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.




Abstract:Deep convolutional neural networks have significantly improved the peak signal-to-noise ratio of SuperResolution (SR). However, image viewer applications commonly allow users to zoom the images to arbitrary magnification scales, thus far imposing a large number of required training scales at a tremendous computational cost. To obtain a more computationally efficient model for arbitrary scale SR, this paper employs a Laplacian pyramid method to reconstruct any-scale high-resolution (HR) images using the high-frequency image details in a Laplacian Frequency Representation. For SR of small-scales (between 1 and 2), images are constructed by interpolation from a sparse set of precalculated Laplacian pyramid levels. SR of larger scales is computed by recursion from small scales, which significantly reduces the computational cost. For a full comparison, fixed- and any-scale experiments are conducted using various benchmarks. At fixed scales, ASDN outperforms predefined upsampling methods (e.g., SRCNN, VDSR, DRRN) by about 1 dB in PSNR. At any-scale, ASDN generally exceeds Meta-SR on many scales.




Abstract:This paper proposes Deep Bi-Dense Networks (DBDN) for single image super-resolution. Our approach extends previous intra-block dense connection approaches by including novel inter-block dense connections. In this way, feature information propagates from a single dense block to all subsequent blocks, instead of to a single successor. To build a DBDN, we firstly construct intra-dense blocks, which extract and compress abundant local features via densely connected convolutional layers and compression layers for further feature learning. Then, we use an inter-block dense net to connect intra-dense blocks, which allow each intra-dense block propagates its own local features to all successors. Additionally, our bi-dense construction connects each block to the output, alleviating the vanishing gradient problems in training. The evaluation of our proposed method on five benchmark datasets shows that our DBDN outperforms the state of the art in SISR with a moderate number of network parameters.