Abstract:Speech dysfluency detection is crucial for clinical diagnosis and language assessment, but existing methods are limited by the scarcity of high-quality annotated data. Although recent advances in TTS model have enabled synthetic dysfluency generation, existing synthetic datasets suffer from unnatural prosody and limited contextual diversity. To address these limitations, we propose LLM-Dys -- the most comprehensive dysfluent speech corpus with LLM-enhanced dysfluency simulation. This dataset captures 11 dysfluency categories spanning both word and phoneme levels. Building upon this resource, we improve an end-to-end dysfluency detection framework. Experimental validation demonstrates state-of-the-art performance. All data, models, and code are open-sourced at https://github.com/Berkeley-Speech-Group/LLM-Dys.
Abstract:Automatic detection of speech dysfluency aids speech-language pathologists in efficient transcription of disordered speech, enhancing diagnostics and treatment planning. Traditional methods, often limited to classification, provide insufficient clinical insight, and text-independent models misclassify dysfluency, especially in context-dependent cases. This work introduces Dysfluent-WFST, a zero-shot decoder that simultaneously transcribes phonemes and detects dysfluency. Unlike previous models, Dysfluent-WFST operates with upstream encoders like WavLM and requires no additional training. It achieves state-of-the-art performance in both phonetic error rate and dysfluency detection on simulated and real speech data. Our approach is lightweight, interpretable, and effective, demonstrating that explicit modeling of pronunciation behavior in decoding, rather than complex architectures, is key to improving dysfluency processing systems.
Abstract:Spoken dialogue modeling introduces unique challenges beyond text-based language modeling, demanding robust turn-taking, backchanneling, and real-time interaction. Although most Spoken Dialogue Models (SDMs) rely on half-duplex processing (handling speech one turn at a time), emerging full-duplex SDMs can listen and speak simultaneously, enabling more natural and engaging conversations. However, current evaluations of such models remain limited, often focusing on turn-based metrics or high-level corpus analyses (e.g., turn gaps, pauses). To address this gap, we present Full-Duplex-Bench, a new benchmark that systematically evaluates key conversational behaviors: pause handling, backchanneling, turn-taking, and interruption management. Our framework uses automatic metrics for consistent and reproducible assessments of SDMs' interactive performance. By offering an open and standardized evaluation benchmark, we aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.
Abstract:Speech is a hierarchical collection of text, prosody, emotions, dysfluencies, etc. Automatic transcription of speech that goes beyond text (words) is an underexplored problem. We focus on transcribing speech along with non-fluencies (dysfluencies). The current state-of-the-art pipeline SSDM suffers from complex architecture design, training complexity, and significant shortcomings in the local sequence aligner, and it does not explore in-context learning capacity. In this work, we propose SSDM 2.0, which tackles those shortcomings via four main contributions: (1) We propose a novel \textit{neural articulatory flow} to derive highly scalable speech representations. (2) We developed a \textit{full-stack connectionist subsequence aligner} that captures all types of dysfluencies. (3) We introduced a mispronunciation prompt pipeline and consistency learning module into LLM to leverage dysfluency \textit{in-context pronunciation learning} abilities. (4) We curated Libri-Dys and open-sourced the current largest-scale co-dysfluency corpus, \textit{Libri-Co-Dys}, for future research endeavors. In clinical experiments on pathological speech transcription, we tested SSDM 2.0 using nfvPPA corpus primarily characterized by \textit{articulatory dysfluencies}. Overall, SSDM 2.0 outperforms SSDM and all other dysfluency transcription models by a large margin. See our project demo page at \url{https://berkeley-speech-group.github.io/SSDM2.0/}.
Abstract:Current de-facto dysfluency modeling methods utilize template matching algorithms which are not generalizable to out-of-domain real-world dysfluencies across languages, and are not scalable with increasing amounts of training data. To handle these problems, we propose Stutter-Solver: an end-to-end framework that detects dysfluency with accurate type and time transcription, inspired by the YOLO object detection algorithm. Stutter-Solver can handle co-dysfluencies and is a natural multi-lingual dysfluency detector. To leverage scalability and boost performance, we also introduce three novel dysfluency corpora: VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation through articulatory-encodec and TTS-based methods. Our approach achieves state-of-the-art performance on all available dysfluency corpora. Code and datasets are open-sourced at https://github.com/eureka235/Stutter-Solver
Abstract:Dysfluent speech detection is the bottleneck for disordered speech analysis and spoken language learning. Current state-of-the-art models are governed by rule-based systems which lack efficiency and robustness, and are sensitive to template design. In this paper, we propose YOLO-Stutter: a first end-to-end method that detects dysfluencies in a time-accurate manner. YOLO-Stutter takes imperfect speech-text alignment as input, followed by a spatial feature aggregator, and a temporal dependency extractor to perform region-wise boundary and class predictions. We also introduce two dysfluency corpus, VCTK-Stutter and VCTK-TTS, that simulate natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation. Our end-to-end method achieves state-of-the-art performance with a minimum number of trainable parameters for on both simulated data and real aphasia speech. Code and datasets are open-sourced at https://github.com/rorizzz/YOLO-Stutter
Abstract:Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose \textit{SSDM: Scalable Speech Dysfluency Modeling}, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a large-scale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling. Demo is available at \url{https://eureka235.github.io}.
Abstract:Achieving nuanced and accurate emulation of human voice has been a longstanding goal in artificial intelligence. Although significant progress has been made in recent years, the mainstream of speech synthesis models still relies on supervised speaker modeling and explicit reference utterances. However, there are many aspects of human voice, such as emotion, intonation, and speaking style, for which it is hard to obtain accurate labels. In this paper, we propose VoxGenesis, a novel unsupervised speech synthesis framework that can discover a latent speaker manifold and meaningful voice editing directions without supervision. VoxGenesis is conceptually simple. Instead of mapping speech features to waveforms deterministically, VoxGenesis transforms a Gaussian distribution into speech distributions conditioned and aligned by semantic tokens. This forces the model to learn a speaker distribution disentangled from the semantic content. During the inference, sampling from the Gaussian distribution enables the creation of novel speakers with distinct characteristics. More importantly, the exploration of latent space uncovers human-interpretable directions associated with specific speaker characteristics such as gender attributes, pitch, tone, and emotion, allowing for voice editing by manipulating the latent codes along these identified directions. We conduct extensive experiments to evaluate the proposed VoxGenesis using both subjective and objective metrics, finding that it produces significantly more diverse and realistic speakers with distinct characteristics than the previous approaches. We also show that latent space manipulation produces consistent and human-identifiable effects that are not detrimental to the speech quality, which was not possible with previous approaches. Audio samples of VoxGenesis can be found at: \url{https://bit.ly/VoxGenesis}.
Abstract:Speech disfluency modeling is the bottleneck for both speech therapy and language learning. However, there is no effective AI solution to systematically tackle this problem. We solidify the concept of disfluent speech and disfluent speech modeling. We then present Hierarchical Unconstrained Disfluency Modeling (H-UDM) approach, the hierarchical extension of UDM that addresses both disfluency transcription and detection to eliminate the need for extensive manual annotation. Our experimental findings serve as clear evidence of the effectiveness and reliability of the methods we have introduced, encompassing both transcription and detection tasks.
Abstract:Dysfluent speech modeling requires time-accurate and silence-aware transcription at both the word-level and phonetic-level. However, current research in dysfluency modeling primarily focuses on either transcription or detection, and the performance of each aspect remains limited. In this work, we present an unconstrained dysfluency modeling (UDM) approach that addresses both transcription and detection in an automatic and hierarchical manner. UDM eliminates the need for extensive manual annotation by providing a comprehensive solution. Furthermore, we introduce a simulated dysfluent dataset called VCTK++ to enhance the capabilities of UDM in phonetic transcription. Our experimental results demonstrate the effectiveness and robustness of our proposed methods in both transcription and detection tasks.