Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu

Membership inference attacks are designed to determine, using black box access to trained models, whether a particular example was used in training or not. Membership inference can be formalized as a hypothesis testing problem. The most effective existing attacks estimate the distribution of some test statistic (usually the model's confidence on the true label) on points that were (and were not) used in training by training many \emph{shadow models} -- i.e. models of the same architecture as the model being attacked, trained on a random subsample of data. While effective, these attacks are extremely computationally expensive, especially when the model under attack is large. We introduce a new class of attacks based on performing quantile regression on the distribution of confidence scores induced by the model under attack on points that are not used in training. We show that our method is competitive with state-of-the-art shadow model attacks, while requiring substantially less compute because our attack requires training only a single model. Moreover, unlike shadow model attacks, our proposed attack does not require any knowledge of the architecture of the model under attack and is therefore truly ``black-box". We show the efficacy of this approach in an extensive series of experiments on various datasets and model architectures.

Via

John Dickerson, Seyed A. Esmaeili, Jamie Morgenstern, Claire Jie Zhang

The remarkable attention which fair clustering has received in the last few years has resulted in a significant number of different notions of fairness. Despite the fact that these notions are well-justified, they are often motivated and studied in a disjoint manner where one fairness desideratum is considered exclusively in isolation from the others. This leaves the understanding of the relations between different fairness notions as an important open problem in fair clustering. In this paper, we take the first step in this direction. Specifically, we consider the two most prominent demographic representation fairness notions in clustering: (1) Group Fairness (GF), where the different demographic groups are supposed to have close to population-level representation in each cluster and (2) Diversity in Center Selection (DS), where the selected centers are supposed to have close to population-level representation of each group. We show that given a constant approximation algorithm for one constraint (GF or DS only) we can obtain a constant approximation solution that satisfies both constraints simultaneously. Interestingly, we prove that any given solution that satisfies the GF constraint can always be post-processed at a bounded degradation to the clustering cost to additionally satisfy the DS constraint while the reverse is not true. Furthermore, we show that both GF and DS are incompatible (having an empty feasibility set in the worst case) with a collection of other distance-based fairness notions. Finally, we carry experiments to validate our theoretical findings.

Via

Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth

We show how to take a regression function $\hat{f}$ that is appropriately ``multicalibrated'' and efficiently post-process it into an approximately error minimizing classifier satisfying a large variety of fairness constraints. The post-processing requires no labeled data, and only a modest amount of unlabeled data and computation. The computational and sample complexity requirements of computing $\hat f$ are comparable to the requirements for solving a single fair learning task optimally, but it can in fact be used to solve many different downstream fairness-constrained learning problems efficiently. Our post-processing method easily handles intersecting groups, generalizing prior work on post-processing regression functions to satisfy fairness constraints that only applied to disjoint groups. Our work extends recent work showing that multicalibrated regression functions are ``omnipredictors'' (i.e. can be post-processed to optimally solve unconstrained ERM problems) to constrained optimization.

Via

Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian

In this paper, we propose a natural notion of individual preference (IP) stability for clustering, which asks that every data point, on average, is closer to the points in its own cluster than to the points in any other cluster. Our notion can be motivated from several perspectives, including game theory and algorithmic fairness. We study several questions related to our proposed notion. We first show that deciding whether a given data set allows for an IP-stable clustering in general is NP-hard. As a result, we explore the design of efficient algorithms for finding IP-stable clusterings in some restricted metric spaces. We present a polytime algorithm to find a clustering satisfying exact IP-stability on the real line, and an efficient algorithm to find an IP-stable 2-clustering for a tree metric. We also consider relaxing the stability constraint, i.e., every data point should not be too far from its own cluster compared to any other cluster. For this case, we provide polytime algorithms with different guarantees. We evaluate some of our algorithms and several standard clustering approaches on real data sets.

Via

Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson

Active learning methods have shown great promise in reducing the number of samples necessary for learning. As automated learning systems are adopted into real-time, real-world decision-making pipelines, it is increasingly important that such algorithms are designed with safety in mind. In this work we investigate the complexity of learning the best safe decision in interactive environments. We reduce this problem to a constrained linear bandits problem, where our goal is to find the best arm satisfying certain (unknown) safety constraints. We propose an adaptive experimental design-based algorithm, which we show efficiently trades off between the difficulty of showing an arm is unsafe vs suboptimal. To our knowledge, our results are the first on best-arm identification in linear bandits with safety constraints. In practice, we demonstrate that this approach performs well on synthetic and real world datasets.

Via

Sarah Dean, Mihaela Curmei, Lillian J. Ratliff, Jamie Morgenstern, Maryam Fazel

Prediction systems face exogenous and endogenous distribution shift -- the world constantly changes, and the predictions the system makes change the environment in which it operates. For example, a music recommender observes exogeneous changes in the user distribution as different communities have increased access to high speed internet. If users under the age of 18 enjoy their recommendations, the proportion of the user base comprised of those under 18 may endogeneously increase. Most of the study of endogenous shifts has focused on the single decision-maker setting, where there is one learner that users either choose to use or not. This paper studies participation dynamics between sub-populations and possibly many learners. We study the behavior of systems with \emph{risk-reducing} learners and sub-populations. A risk-reducing learner updates their decision upon observing a mixture distribution of the sub-populations $\mathcal{D}$ in such a way that it decreases the risk of the learner on that mixture. A risk reducing sub-population updates its apportionment amongst learners in a way which reduces its overall loss. Previous work on the single learner case shows that myopic risk minimization can result in high overall loss~\citep{perdomo2020performative, miller2021outside} and representation disparity~\citep{hashimoto2018fairness, zhang2019group}. Our work analyzes the outcomes of multiple myopic learners and market forces, often leading to better global loss and less representation disparity.

Via

Sarah Dean, Jamie Morgenstern

Many projects (both practical and academic) have designed algorithms to match users to content they will enjoy under the assumption that user's preferences and opinions do not change with the content they see. Evidence suggests that individuals' preferences are directly shaped by what content they see -- radicalization, rabbit holes, polarization, and boredom are all example phenomena of preferences affected by content. Polarization in particular can occur even in ecosystems with "mass media," where no personalization takes place, as recently explored in a natural model of preference dynamics by~\citet{hkazla2019geometric} and~\citet{gaitonde2021polarization}. If all users' preferences are drawn towards content they already like, or are repelled from content they already dislike, uniform consumption of media leads to a population of heterogeneous preferences converging towards only two poles. In this work, we explore whether some phenomenon akin to polarization occurs when users receive \emph{personalized} content recommendations. We use a similar model of preference dynamics, where an individual's preferences move towards content the consume and enjoy, and away from content they consume and dislike. We show that standard user reward maximization is an almost trivial goal in such an environment (a large class of simple algorithms will achieve only constant regret). A more interesting objective, then, is to understand under what conditions a recommendation algorithm can ensure stationarity of user's preferences. We show how to design a content recommendations which can achieve approximate stationarity, under mild conditions on the set of available content, when a user's preferences are known, and how one can learn enough about a user's preferences to implement such a strategy even when user preferences are initially unknown.

Via

Pranjal Awasthi, Christopher Jung, Jamie Morgenstern

Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional auxiliary features not present in the first dataset. What is the most principled way to use these datasets together to construct a predictor? The answer should depend upon whether these datasets are generated by the same or different distributions over their mutual feature sets, and how similar the test distribution will be to either of those distributions. In many applications, the two datasets will likely follow different distributions, but both may be close to the test distribution. We introduce the problem of building a predictor which minimizes the maximum loss over all probability distributions over the original features, auxiliary features, and binary labels, whose Wasserstein distance is $r_1$ away from the empirical distribution over the labeled dataset and $r_2$ away from that of the unlabeled dataset. This can be thought of as a generalization of distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled and may contain auxiliary features.

Via

Bhuvesh Kumar, Jamie Morgenstern, Okke Schrijvers

Online ad platforms offer budget management tools for advertisers that aim to maximize the number of conversions given a budget constraint. As the volume of impressions, conversion rates and prices vary over time, these budget management systems learn a spend plan (to find the optimal distribution of budget over time) and run a pacing algorithm which follows the spend plan. This paper considers two models for impressions and competition that varies with time: a) an episodic model which exhibits stationarity in each episode, but each episode can be arbitrarily different from the next, and b) a model where the distributions of prices and values change slowly over time. We present the first learning theoretic guarantees on both the accuracy of spend plans and the resulting end-to-end budget management system. We present four main results: 1) for the episodic setting we give sample complexity bounds for the spend rate prediction problem: given $n$ samples from each episode, with high probability we have $|\widehat{\rho}_e - \rho_e| \leq \tilde{O}(\frac{1}{n^{1/3}})$ where $\rho_e$ is the optimal spend rate for the episode, $\widehat{\rho}_e$ is the estimate from our algorithm, 2) we extend the algorithm of Balseiro and Gur (2017) to operate on varying, approximate spend rates and show that the resulting combined system of optimal spend rate estimation and online pacing algorithm for episodic settings has regret that vanishes in number of historic samples $n$ and the number of rounds $T$, 3) for non-episodic but slowly-changing distributions we show that the same approach approximates the optimal bidding strategy up to a factor dependent on the rate-of-change of the distributions and 4) we provide experiments showing that our algorithm outperforms both static spend plans and non-pacing across a wide variety of settings.

Via

Siddarth Srinivasan, Jamie Morgenstern

Peer reviewed publications are considered the gold standard in certifying and disseminating ideas that a research community considers valuable. However, we identify two major drawbacks of the current system: (1) the overwhelming demand for reviewers due to a large volume of submissions, and (2) the lack of incentives for reviewers to participate and expend the necessary effort to provide high-quality reviews. In this work, we adopt a mechanism-design approach to propose improvements to the peer review process. We present a two-stage mechanism which ties together the paper submission and review process, simultaneously incentivizing high-quality reviews and high-quality submissions. In the first stage, authors participate in a VCG auction for review slots by submitting their papers along with a bid that represents their expected value for having their paper reviewed. For the second stage, we propose a novel prediction market-style mechanism (H-DIPP) building on recent work in the information elicitation literature, which incentivizes participating reviewers to provide honest and effortful reviews. The revenue raised by the Stage I auction is used in Stage II to pay reviewers based on the quality of their reviews.

Via