Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Avinandan Bose, Mihaela Curmei, Daniel L. Jiang, Jamie Morgenstern, Sarah Dean, Lillian J. Ratliff, Maryam Fazel

This paper studies ML systems that interactively learn from users across multiple subpopulations with heterogeneous data distributions. The primary objective is to provide specialized services for different user groups while also predicting user preferences. Once the users select a service based on how well the service anticipated their preference, the services subsequently adapt and refine themselves based on the user data they accumulate, resulting in an iterative, alternating minimization process between users and services (learning dynamics). Employing such tailored approaches has two main challenges: (i) Unknown user preferences: Typically, data on user preferences are unavailable without interaction, and uniform data collection across a large and diverse user base can be prohibitively expensive. (ii) Suboptimal Local Solutions: The total loss (sum of loss functions across all users and all services) landscape is not convex even if the individual losses on a single service are convex, making it likely for the learning dynamics to get stuck in local minima. The final outcome of the aforementioned learning dynamics is thus strongly influenced by the initial set of services offered to users, and is not guaranteed to be close to the globally optimal outcome. In this work, we propose a randomized algorithm to adaptively select very few users to collect preference data from, while simultaneously initializing a set of services. We prove that under mild assumptions on the loss functions, the expected total loss achieved by the algorithm right after initialization is within a factor of the globally optimal total loss with complete user preference data, and this factor scales only logarithmically in the number of services. Our theory is complemented by experiments on real as well as semi-synthetic datasets.

Via

We study the sample complexity of identifying the pure strategy Nash equilibrium (PSNE) in a two-player zero-sum matrix game with noise. Formally, we are given a stochastic model where any learner can sample an entry $(i,j)$ of the input matrix $A\in[-1,1]^{n\times m}$ and observe $A_{i,j}+\eta$ where $\eta$ is a zero-mean 1-sub-Gaussian noise. The aim of the learner is to identify the PSNE of $A$, whenever it exists, with high probability while taking as few samples as possible. Zhou et al. (2017) presents an instance-dependent sample complexity lower bound that depends only on the entries in the row and column in which the PSNE lies. We design a near-optimal algorithm whose sample complexity matches the lower bound, up to log factors. The problem of identifying the PSNE also generalizes the problem of pure exploration in stochastic multi-armed bandits and dueling bandits, and our result matches the optimal bounds, up to log factors, in both the settings.

Via

This paper considers a variant of zero-sum matrix games where at each timestep the row player chooses row $i$, the column player chooses column $j$, and the row player receives a noisy reward with mean $A_{i,j}$. The objective of the row player is to accumulate as much reward as possible, even against an adversarial column player. If the row player uses the EXP3 strategy, an algorithm known for obtaining $\sqrt{T}$ regret against an arbitrary sequence of rewards, it is immediate that the row player also achieves $\sqrt{T}$ regret relative to the Nash equilibrium in this game setting. However, partly motivated by the fact that the EXP3 strategy is myopic to the structure of the game, O'Donoghue et al. (2021) proposed a UCB-style algorithm that leverages the game structure and demonstrated that this algorithm greatly outperforms EXP3 empirically. While they showed that this UCB-style algorithm achieved $\sqrt{T}$ regret, in this paper we ask if there exists an algorithm that provably achieves $\text{polylog}(T)$ regret against any adversary, analogous to results from stochastic bandits. We propose a novel algorithm that answers this question in the affirmative for the simple $2 \times 2$ setting, providing the first instance-dependent guarantees for games in the regret setting. Our algorithm overcomes two major hurdles: 1) obtaining logarithmic regret even though the Nash equilibrium is estimable only at a $1/\sqrt{T}$ rate, and 2) designing row-player strategies that guarantee that either the adversary provides information about the Nash equilibrium, or the row player incurs negative regret. Moreover, in the full information case we address the general $n \times m$ case where the first hurdle is still relevant. Finally, we show that EXP3 and the UCB-based algorithm necessarily cannot perform better than $\sqrt{T}$.

Via

Autocurricular training is an important sub-area of multi-agent reinforcement learning~(MARL) that allows multiple agents to learn emergent skills in an unsupervised co-evolving scheme. The robotics community has experimented autocurricular training with physically grounded problems, such as robust control and interactive manipulation tasks. However, the asymmetric nature of these tasks makes the generation of sophisticated policies challenging. Indeed, the asymmetry in the environment may implicitly or explicitly provide an advantage to a subset of agents which could, in turn, lead to a low-quality equilibrium. This paper proposes a novel game-theoretic algorithm, Stackelberg Multi-Agent Deep Deterministic Policy Gradient (ST-MADDPG), which formulates a two-player MARL problem as a Stackelberg game with one player as the `leader' and the other as the `follower' in a hierarchical interaction structure wherein the leader has an advantage. We first demonstrate that the leader's advantage from ST-MADDPG can be used to alleviate the inherent asymmetry in the environment. By exploiting the leader's advantage, ST-MADDPG improves the quality of a co-evolution process and results in more sophisticated and complex strategies that work well even against an unseen strong opponent.

Via

Adaptive machines have the potential to assist or interfere with human behavior in a range of contexts, from cognitive decision-making to physical device assistance. Therefore it is critical to understand how machine learning algorithms can influence human actions, particularly in situations where machine goals are misaligned with those of people. Since humans continually adapt to their environment using a combination of explicit and implicit strategies, when the environment contains an adaptive machine, the human and machine play a game. Game theory is an established framework for modeling interactions between two or more decision-makers that has been applied extensively in economic markets and machine algorithms. However, existing approaches make assumptions about, rather than empirically test, how adaptation by individual humans is affected by interaction with an adaptive machine. Here we tested learning algorithms for machines playing general-sum games with human subjects. Our algorithms enable the machine to select the outcome of the co-adaptive interaction from a constellation of game-theoretic equilibria in action and policy spaces. Importantly, the machine learning algorithms work directly from observations of human actions without solving an inverse problem to estimate the human's utility function as in prior work. Surprisingly, one algorithm can steer the human-machine interaction to the machine's optimum, effectively controlling the human's actions even while the human responds optimally to their perceived cost landscape. Our results show that game theory can be used to predict and design outcomes of co-adaptive interactions between intelligent humans and machines.

Via

We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum $n\times 2$ matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions $i$ and $j$, respectively, they both observe each other's played actions and a stochastic observation $X_{ij}$ such that $\mathbb E[ X_{ij}] = A_{ij}$. To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix $A$ as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound.

Via

Prediction systems face exogenous and endogenous distribution shift -- the world constantly changes, and the predictions the system makes change the environment in which it operates. For example, a music recommender observes exogeneous changes in the user distribution as different communities have increased access to high speed internet. If users under the age of 18 enjoy their recommendations, the proportion of the user base comprised of those under 18 may endogeneously increase. Most of the study of endogenous shifts has focused on the single decision-maker setting, where there is one learner that users either choose to use or not. This paper studies participation dynamics between sub-populations and possibly many learners. We study the behavior of systems with \emph{risk-reducing} learners and sub-populations. A risk-reducing learner updates their decision upon observing a mixture distribution of the sub-populations $\mathcal{D}$ in such a way that it decreases the risk of the learner on that mixture. A risk reducing sub-population updates its apportionment amongst learners in a way which reduces its overall loss. Previous work on the single learner case shows that myopic risk minimization can result in high overall loss~\citep{perdomo2020performative, miller2021outside} and representation disparity~\citep{hashimoto2018fairness, zhang2019group}. Our work analyzes the outcomes of multiple myopic learners and market forces, often leading to better global loss and less representation disparity.

Via

Inspired by applications such as supply chain management, epidemics, and social networks, we formulate a stochastic game model that addresses three key features common across these domains: 1) network-structured player interactions, 2) pair-wise mixed cooperation and competition among players, and 3) limited global information toward individual decision-making. In combination, these features pose significant challenges for black box approaches taken by deep learning-based multi-agent reinforcement learning (MARL) algorithms and deserve more detailed analysis. We formulate a networked stochastic game with pair-wise general sum objectives and asymmetrical information structure, and empirically explore the effects of information availability on the outcomes of different MARL paradigms such as individual learning and centralized learning decentralized execution.

Via

This paper studies the problem of expected loss minimization given a data distribution that is dependent on the decision-maker's action and evolves dynamically in time according to a geometric decay process. Novel algorithms for both the information setting in which the decision-maker has a first order gradient oracle and the setting in which they have simply a loss function oracle are introduced. The algorithms operate on the same underlying principle: the decision-maker repeatedly deploys a fixed decision over the length of an epoch, thereby allowing the dynamically changing environment to sufficiently mix before updating the decision. The iteration complexity in each of the settings is shown to match existing rates for first and zero order stochastic gradient methods up to logarithmic factors. The algorithms are evaluated on a "semi-synthetic" example using real world data from the SFpark dynamic pricing pilot study; it is shown that the announced prices result in an improvement for the institution's objective (target occupancy), while achieving an overall reduction in parking rates.

Via

Learning problems commonly exhibit an interesting feedback mechanism wherein the population data reacts to competing decision makers' actions. This paper formulates a new game theoretic framework for this phenomenon, called multi-player performative prediction. We focus on two distinct solution concepts, namely (i) performatively stable equilibria and (ii) Nash equilibria of the game. The latter equilibria are arguably more informative, but can be found efficiently only when the game is monotone. We show that under mild assumptions, the performatively stable equilibria can be found efficiently by a variety of algorithms, including repeated retraining and repeated (stochastic) gradient play. We then establish transparent sufficient conditions for strong monotonicity of the game and use them to develop algorithms for finding Nash equilibria. We investigate derivative free methods and adaptive gradient algorithms wherein each player alternates between learning a parametric description of their distribution and gradient steps on the empirical risk. Synthetic and semi-synthetic numerical experiments illustrate the results.

Via