Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Avinandan Bose, Simon Shaolei Du, Maryam Fazel

We study the problem of representation transfer in offline Reinforcement Learning (RL), where a learner has access to episodic data from a number of source tasks collected a priori, and aims to learn a shared representation to be used in finding a good policy for a target task. Unlike in online RL where the agent interacts with the environment while learning a policy, in the offline setting there cannot be such interactions in either the source tasks or the target task; thus multi-task offline RL can suffer from incomplete coverage. We propose an algorithm to compute pointwise uncertainty measures for the learnt representation, and establish a data-dependent upper bound for the suboptimality of the learnt policy for the target task. Our algorithm leverages the collective exploration done by source tasks to mitigate poor coverage at some points by a few tasks, thus overcoming the limitation of needing uniformly good coverage for a meaningful transfer by existing offline algorithms. We complement our theoretical results with empirical evaluation on a rich-observation MDP which requires many samples for complete coverage. Our findings illustrate the benefits of penalizing and quantifying the uncertainty in the learnt representation.

Via

Qiwen Cui, Maryam Fazel, Simon S. Du

We study how to learn the optimal tax design to maximize the efficiency in nonatomic congestion games. It is known that self-interested behavior among the players can damage the system's efficiency. Tax mechanisms is a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step for learning the optimal tax that can minimize the social cost with \emph{equilibrium feedback}, i.e., the tax designer can only observe the equilibrium state under the enforced tax. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, our algorithm leverages several novel components: (1) piece-wise linear tax to approximate the optimal tax; (2) an extra linear term to guarantee a strongly convex potential function; (3) efficient subroutine to find the ``boundary'' tax. The algorithm can find an $\epsilon$-optimal tax with $O(\beta F^2/\epsilon)$ sample complexity, where $\beta$ is the smoothness of the cost function and $F$ is the number of facilities.

Via

Avinandan Bose, Mihaela Curmei, Daniel L. Jiang, Jamie Morgenstern, Sarah Dean, Lillian J. Ratliff, Maryam Fazel

This paper studies ML systems that interactively learn from users across multiple subpopulations with heterogeneous data distributions. The primary objective is to provide specialized services for different user groups while also predicting user preferences. Once the users select a service based on how well the service anticipated their preference, the services subsequently adapt and refine themselves based on the user data they accumulate, resulting in an iterative, alternating minimization process between users and services (learning dynamics). Employing such tailored approaches has two main challenges: (i) Unknown user preferences: Typically, data on user preferences are unavailable without interaction, and uniform data collection across a large and diverse user base can be prohibitively expensive. (ii) Suboptimal Local Solutions: The total loss (sum of loss functions across all users and all services) landscape is not convex even if the individual losses on a single service are convex, making it likely for the learning dynamics to get stuck in local minima. The final outcome of the aforementioned learning dynamics is thus strongly influenced by the initial set of services offered to users, and is not guaranteed to be close to the globally optimal outcome. In this work, we propose a randomized algorithm to adaptively select very few users to collect preference data from, while simultaneously initializing a set of services. We prove that under mild assumptions on the loss functions, the expected total loss achieved by the algorithm right after initialization is within a factor of the globally optimal total loss with complete user preference data, and this factor scales only logarithmically in the number of services. Our theory is complemented by experiments on real as well as semi-synthetic datasets.

Via

Zhihan Xiong, Romain Camilleri, Maryam Fazel, Lalit Jain, Kevin Jamieson

We investigate the fixed-budget best-arm identification (BAI) problem for linear bandits in a potentially non-stationary environment. Given a finite arm set $\mathcal{X}\subset\mathbb{R}^d$, a fixed budget $T$, and an unpredictable sequence of parameters $\left\lbrace\theta_t\right\rbrace_{t=1}^{T}$, an algorithm will aim to correctly identify the best arm $x^* := \arg\max_{x\in\mathcal{X}}x^\top\sum_{t=1}^{T}\theta_t$ with probability as high as possible. Prior work has addressed the stationary setting where $\theta_t = \theta_1$ for all $t$ and demonstrated that the error probability decreases as $\exp(-T /\rho^*)$ for a problem-dependent constant $\rho^*$. But in many real-world $A/B/n$ multivariate testing scenarios that motivate our work, the environment is non-stationary and an algorithm expecting a stationary setting can easily fail. For robust identification, it is well-known that if arms are chosen randomly and non-adaptively from a G-optimal design over $\mathcal{X}$ at each time then the error probability decreases as $\exp(-T\Delta^2_{(1)}/d)$, where $\Delta_{(1)} = \min_{x \neq x^*} (x^* - x)^\top \frac{1}{T}\sum_{t=1}^T \theta_t$. As there exist environments where $\Delta_{(1)}^2/ d \ll 1/ \rho^*$, we are motivated to propose a novel algorithm $\mathsf{P1}$-$\mathsf{RAGE}$ that aims to obtain the best of both worlds: robustness to non-stationarity and fast rates of identification in benign settings. We characterize the error probability of $\mathsf{P1}$-$\mathsf{RAGE}$ and demonstrate empirically that the algorithm indeed never performs worse than G-optimal design but compares favorably to the best algorithms in the stationary setting.

Via

Haozhe Jiang, Qiwen Cui, Zhihan Xiong, Maryam Fazel, Simon S. Du

We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve $\widetilde{O}\left(\Delta^{1/4}T^{3/4}\right)$ regret when the degree of nonstationarity, as measured by total variation $\Delta$, is known, and $\widetilde{O}\left(\Delta^{1/5}T^{4/5}\right)$ regret when $\Delta$ is unknown, where $T$ is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria.

Via

Omid Sadeghi, Maryam Fazel

We study a generalization of the online binary prediction with expert advice framework where at each round, the learner is allowed to pick $m\geq 1$ experts from a pool of $K$ experts and the overall utility is a modular or submodular function of the chosen experts. We focus on the setting in which experts act strategically and aim to maximize their influence on the algorithm's predictions by potentially misreporting their beliefs about the events. Among others, this setting finds applications in forecasting competitions where the learner seeks not only to make predictions by aggregating different forecasters but also to rank them according to their relative performance. Our goal is to design algorithms that satisfy the following two requirements: 1) $\textit{Incentive-compatible}$: Incentivize the experts to report their beliefs truthfully, and 2) $\textit{No-regret}$: Achieve sublinear regret with respect to the true beliefs of the best fixed set of $m$ experts in hindsight. Prior works have studied this framework when $m=1$ and provided incentive-compatible no-regret algorithms for the problem. We first show that a simple reduction of our problem to the $m=1$ setting is neither efficient nor effective. Then, we provide algorithms that utilize the specific structure of the utility functions to achieve the two desired goals.

Via

Yuzhen Qin, Yingcong Li, Fabio Pasqualetti, Maryam Fazel, Samet Oymak

The growing interest in complex decision-making and language modeling problems highlights the importance of sample-efficient learning over very long horizons. This work takes a step in this direction by investigating contextual linear bandits where the current reward depends on at most $s$ prior actions and contexts (not necessarily consecutive), up to a time horizon of $h$. In order to avoid polynomial dependence on $h$, we propose new algorithms that leverage sparsity to discover the dependence pattern and arm parameters jointly. We consider both the data-poor ($T<h$) and data-rich ($T\ge h$) regimes, and derive respective regret upper bounds $\tilde O(d\sqrt{sT} +\min\{ q, T\})$ and $\tilde O(\sqrt{sdT})$, with sparsity $s$, feature dimension $d$, total time horizon $T$, and $q$ that is adaptive to the reward dependence pattern. Complementing upper bounds, we also show that learning over a single trajectory brings inherent challenges: While the dependence pattern and arm parameters form a rank-1 matrix, circulant matrices are not isometric over rank-1 manifolds and sample complexity indeed benefits from the sparse reward dependence structure. Our results necessitate a new analysis to address long-range temporal dependencies across data and avoid polynomial dependence on the reward horizon $h$. Specifically, we utilize connections to the restricted isometry property of circulant matrices formed by dependent sub-Gaussian vectors and establish new guarantees that are also of independent interest.

Via

Haozhe Jiang, Qiwen Cui, Zhihan Xiong, Maryam Fazel, Simon S. Du

This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games.The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and give a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback.

Via

Bin Hu, Kaiqing Zhang, Na Li, Mehran Mesbahi, Maryam Fazel, Tamer Başar

Gradient-based methods have been widely used for system design and optimization in diverse application domains. Recently, there has been a renewed interest in studying theoretical properties of these methods in the context of control and reinforcement learning. This article surveys some of the recent developments on policy optimization, a gradient-based iterative approach for feedback control synthesis, popularized by successes of reinforcement learning. We take an interdisciplinary perspective in our exposition that connects control theory, reinforcement learning, and large-scale optimization. We review a number of recently-developed theoretical results on the optimization landscape, global convergence, and sample complexity of gradient-based methods for various continuous control problems such as the linear quadratic regulator (LQR), $\mathcal{H}_\infty$ control, risk-sensitive control, linear quadratic Gaussian (LQG) control, and output feedback synthesis. In conjunction with these optimization results, we also discuss how direct policy optimization handles stability and robustness concerns in learning-based control, two main desiderata in control engineering. We conclude the survey by pointing out several challenges and opportunities at the intersection of learning and control.

Via

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, Zaid Harchaoui

We present the implementation of nonlinear control algorithms based on linear and quadratic approximations of the objective from a functional viewpoint. We present a gradient descent, a Gauss-Newton method, a Newton method, differential dynamic programming approaches with linear quadratic or quadratic approximations, various line-search strategies, and regularized variants of these algorithms. We derive the computational complexities of all algorithms in a differentiable programming framework and present sufficient optimality conditions. We compare the algorithms on several benchmarks, such as autonomous car racing using a bicycle model of a car. The algorithms are coded in a differentiable programming language in a publicly available package.

Via