Abstract:The World Wide Web thrives on intelligent services that rely on accurate time series classification, which has recently witnessed significant progress driven by advances in deep learning. However, existing studies face challenges in domain incremental learning. In this paper, we propose a lightweight and robust dual-causal disentanglement framework (DualCD) to enhance the robustness of models under domain incremental scenarios, which can be seamlessly integrated into time series classification models. Specifically, DualCD first introduces a temporal feature disentanglement module to capture class-causal features and spurious features. The causal features can offer sufficient predictive power to support the classifier in domain incremental learning settings. To accurately capture these causal features, we further design a dual-causal intervention mechanism to eliminate the influence of both intra-class and inter-class confounding features. This mechanism constructs variant samples by combining the current class's causal features with intra-class spurious features and with causal features from other classes. The causal intervention loss encourages the model to accurately predict the labels of these variant samples based solely on the causal features. Extensive experiments on multiple datasets and models demonstrate that DualCD effectively improves performance in domain incremental scenarios. We summarize our rich experiments into a comprehensive benchmark to facilitate research in domain incremental time series classification.




Abstract:We present PandaGPT, an approach to emPower large lANguage moDels with visual and Auditory instruction-following capabilities. Our pilot experiments show that PandaGPT can perform complex tasks such as detailed image description generation, writing stories inspired by videos, and answering questions about audios. More interestingly, PandaGPT can take multimodal inputs simultaneously and compose their semantics naturally. For example, PandaGPT can connect how objects look in an image/video and how they sound in an audio. To do so, PandaGPT combines the multimodal encoders from ImageBind and the large language models from Vicuna. Notably, only aligned image-text pairs are required for the training of PandaGPT. Thanks to the strong capability of ImageBind in embedding data from different modalities into the same space, PandaGPT displays emergent, i.e. zero-shot, cross-modal behaviors for data other than image and text (e.g., video, audio, depth, thermal, and IMU). We hope that PandaGPT serves as an initial step toward building AGI that can perceive and understand inputs in different modalities holistically, as we humans do. Our project page is at https://panda-gpt.github.io/.
Abstract:In the study, we empirically compare the two recently proposed decoding methods, i.e. Contrastive Search (CS) and Contrastive Decoding (CD), for open-ended text generation. The automatic evaluation results suggest that, while CS performs worse than CD on the MAUVE metric, it substantially surpasses CD on the diversity and coherence metrics. More notably, extensive human evaluations across three different domains demonstrate that human annotators are universally more in favor of CS over CD with substantial margins. The contradicted results between MAUVE and human evaluations reveal that MAUVE does not accurately reflect human preferences. Therefore, we call upon the research community to develop better evaluation metrics for open-ended text generation. To ensure the reproducibility of our work, we have open-sourced all our code, evaluation results, as well as human annotations at https://github.com/yxuansu/Contrastive_Search_versus_Contrastive_Decoding.