Abstract:Instance segmentation on 3D point clouds has been attracting increasing attention due to its wide applications, especially in scene understanding areas. However, most existing methods require training data to be fully annotated. Manually preparing ground-truth labels at point-level is very cumbersome and labor-intensive. To address this issue, we propose a novel weakly supervised method RWSeg that only requires labeling one object with one point. With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information respectively to unknown regions, using self-attention and random walk. Furthermore, we propose a Cross-graph Competing Random Walks (CGCRW) algorithm which encourages competition among different instance graphs to resolve ambiguities in closely placed objects and improve the performance on instance assignment. RWSeg can generate qualitative instance-level pseudo labels. Experimental results on ScanNet-v2 and S3DIS datasets show that our approach achieves comparable performance with fully-supervised methods and outperforms previous weakly-supervised methods by large margins. This is the first work that bridges the gap between weak and full supervision in the area.
Abstract:Single-view 3D object reconstruction is a fundamental and challenging computer vision task that aims at recovering 3D shapes from single-view RGB images. Most existing deep learning based reconstruction methods are trained and evaluated on the same categories, and they cannot work well when handling objects from novel categories that are not seen during training. Focusing on this issue, this paper tackles Zero-shot Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories and encourage models to reconstruct objects literally. Specifically, we propose an end-to-end two-stage network, ZeroMesh, to break the category boundaries in reconstruction. Firstly, we factorize the complicated image-to-mesh mapping into two simpler mappings, i.e., image-to-point mapping and point-to-mesh mapping, while the latter is mainly a geometric problem and less dependent on object categories. Secondly, we devise a local feature sampling strategy in 2D and 3D feature spaces to capture the local geometry shared across objects to enhance model generalization. Thirdly, apart from the traditional point-to-point supervision, we introduce a multi-view silhouette loss to supervise the surface generation process, which provides additional regularization and further relieves the overfitting problem. The experimental results show that our method significantly outperforms the existing works on the ShapeNet and Pix3D under different scenarios and various metrics, especially for novel objects.
Abstract:This paper investigates an open research problem of generating text-image pairs to improve the training of fine-grained image-to-text cross-modal retrieval task, and proposes a novel framework for paired data augmentation by uncovering the hidden semantic information of StyleGAN2 model. Specifically, we first train a StyleGAN2 model on the given dataset. We then project the real images back to the latent space of StyleGAN2 to obtain the latent codes. To make the generated images manipulatable, we further introduce a latent space alignment module to learn the alignment between StyleGAN2 latent codes and the corresponding textual caption features. When we do online paired data augmentation, we first generate augmented text through random token replacement, then pass the augmented text into the latent space alignment module to output the latent codes, which are finally fed to StyleGAN2 to generate the augmented images. We evaluate the efficacy of our augmented data approach on two public cross-modal retrieval datasets, in which the promising experimental results demonstrate the augmented text-image pair data can be trained together with the original data to boost the image-to-text cross-modal retrieval performance.
Abstract:In this paper, we investigate an open research task of generating 3D cartoon face shapes from single 2D GAN generated human faces and without 3D supervision, where we can also manipulate the facial expressions of the 3D shapes. To this end, we discover the semantic meanings of StyleGAN latent space, such that we are able to produce face images of various expressions, poses, and lighting by controlling the latent codes. Specifically, we first finetune the pretrained StyleGAN face model on the cartoon datasets. By feeding the same latent codes to face and cartoon generation models, we aim to realize the translation from 2D human face images to cartoon styled avatars. We then discover semantic directions of the GAN latent space, in an attempt to change the facial expressions while preserving the original identity. As we do not have any 3D annotations for cartoon faces, we manipulate the latent codes to generate images with different poses and lighting, such that we can reconstruct the 3D cartoon face shapes. We validate the efficacy of our method on three cartoon datasets qualitatively and quantitatively.
Abstract:Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.
Abstract:Few-shot open-set recognition aims to classify both seen and novel images given only limited training data of seen classes. The challenge of this task is that the model is required not only to learn a discriminative classifier to classify the pre-defined classes with few training data but also to reject inputs from unseen classes that never appear at training time. In this paper, we propose to solve the problem from two novel aspects. First, instead of learning the decision boundaries between seen classes, as is done in standard close-set classification, we reserve space for unseen classes, such that images located in these areas are recognized as the unseen classes. Second, to effectively learn such decision boundaries, we propose to utilize the background features from seen classes. As these background regions do not significantly contribute to the decision of close-set classification, it is natural to use them as the pseudo unseen classes for classifier learning. Our extensive experiments show that our proposed method not only outperforms multiple baselines but also sets new state-of-the-art results on three popular benchmarks, namely tieredImageNet, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB).
Abstract:In this work, we address the challenging task of long-tailed image recognition. Previous long-tailed recognition methods commonly focus on the data augmentation or re-balancing strategy of the tail classes to give more attention to tail classes during the model training. However, due to the limited training images for tail classes, the diversity of tail class images is still restricted, which results in poor feature representations. In this work, we hypothesize that common latent features among the head and tail classes can be used to give better feature representation. Motivated by this, we introduce a Latent Categories based long-tail Recognition (LCReg) method. Specifically, we propose to learn a set of class-agnostic latent features shared among the head and tail classes. Then, we implicitly enrich the training sample diversity via applying semantic data augmentation to the latent features. Extensive experiments on five long-tailed image recognition datasets demonstrate that our proposed LCReg is able to significantly outperform previous methods and achieve state-of-the-art results.
Abstract:Few-shot object detection (FSOD), which aims at learning a generic detector that can adapt to unseen tasks with scarce training samples, has witnessed consistent improvement recently. However, most existing methods ignore the efficiency issues, e.g., high computational complexity and slow adaptation speed. Notably, efficiency has become an increasingly important evaluation metric for few-shot techniques due to an emerging trend toward embedded AI. To this end, we present an efficient pretrain-transfer framework (PTF) baseline with no computational increment, which achieves comparable results with previous state-of-the-art (SOTA) methods. Upon this baseline, we devise an initializer named knowledge inheritance (KI) to reliably initialize the novel weights for the box classifier, which effectively facilitates the knowledge transfer process and boosts the adaptation speed. Within the KI initializer, we propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights. Finally, our approach not only achieves the SOTA results across three public benchmarks, i.e., PASCAL VOC, COCO and LVIS, but also exhibits high efficiency with 1.8-9.0x faster adaptation speed against the other methods on COCO/LVIS benchmark during few-shot transfer. To our best knowledge, this is the first work to consider the efficiency problem in FSOD. We hope to motivate a trend toward powerful yet efficient few-shot technique development. The codes are publicly available at https://github.com/Ze-Yang/Efficient-FSOD.
Abstract:Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world. In the computer vision area, many researches focus on co-segmentation (CoS), co-saliency detection (CoSD) and video salient object detection (VSOD) to discover the co-occurrent objects. However, previous approaches design different networks on these similar tasks separately, and they are difficult to apply to each other, which lowers the upper bound of the transferability of deep learning frameworks. Besides, they fail to take full advantage of the cues among inter- and intra-feature within a group of images. In this paper, we introduce a unified framework to tackle these issues, term as UFO (Unified Framework for Co-Object Segmentation). Specifically, we first introduce a transformer block, which views the image feature as a patch token and then captures their long-range dependencies through the self-attention mechanism. This can help the network to excavate the patch structured similarities among the relevant objects. Furthermore, we propose an intra-MLP learning module to produce self-mask to enhance the network to avoid partial activation. Extensive experiments on four CoS benchmarks (PASCAL, iCoseg, Internet and MSRC), three CoSD benchmarks (Cosal2015, CoSOD3k, and CocA) and four VSOD benchmarks (DAVIS16, FBMS, ViSal and SegV2) show that our method outperforms other state-of-the-arts on three different tasks in both accuracy and speed by using the same network architecture , which can reach 140 FPS in real-time.
Abstract:Natural language BERTs are trained with language corpus in a self-supervised manner. Unlike natural language BERTs, vision language BERTs need paired data to train, which restricts the scale of VL-BERT pretraining. We propose a self-training approach that allows training VL-BERTs from unlabeled image data. The proposed method starts with our unified conditional model -- a vision language BERT model that can perform zero-shot conditional generation. Given different conditions, the unified conditional model can generate captions, dense captions, and even questions. We use the labeled image data to train a teacher model and use the trained model to generate pseudo captions on unlabeled image data. We then combine the labeled data and pseudo labeled data to train a student model. The process is iterated by putting the student model as a new teacher. By using the proposed self-training approach and only 300k unlabeled extra data, we are able to get competitive or even better performances compared to the models of similar model size trained with 3 million extra image data.